Hoạt động: Cho điểm A không nằm trên đường thăng d
a) Hãy vẽ đường vuông góc AH và một đường xiên AM từ A đến d
b) Em hãy giải thích vì sao AH < AM
Hướng dẫn giải:
a)
b) Tam giác AHM là một tam giác vuông với góc vuông$\widehat{AHM}$ = 90°. Cho nên $\widehat{AHM}$ sẽ là góc lớn nhất. Theo định lý về góc và cạnh đối diện trong tam giác, AM là cạnh lớn nhất của tam giác AHM và AM > AH.
Luyện tập: Cho hình vuông ABCD có độ dài cạnh bằng 2cm. M là một điểm trên cạnh BC như hình 9.10
a) Hãy chỉ ra các đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng BC.
b) So sánh hai đoạn thẳng AB và AM.
c) Tìm khoảng cách từ điểm C đến đường thẳng AB.
Hướng dẫn giải:
a) Đường vuông góc : AB
Đường xiên :AM
b) Theo định lí đường vuông góc và đường xiên, ta thấy AB là đường vuông góc kẻ từ A đến BC nên AB sẽ ngắn nhất. Suy ra AB < AM
c) Ta có CB ⊥ AB. Suy ra CB là khoảng cách từ điểm C đến AB
ABCD là hình vuông nên CB=AD= 2cm
Vậy khoảng cách từ C đến AB là 2 cm
Thử thách nhỏ:
a) Quan sát hình 9.11, ta thấy khi M thay đổi trên d, M càng xa H thì độ dài AM càng lớn, tức là nếu HM<HN thì AM< AN. Hãy chứng minh khẳng định nhờ quan hệ giữa góc và cạnh đối diện trong tam giác AMN.
b) Xét hình vuông ABCD và một điểm M tùy ý nằm trên các cạnh của hình vuông. Hỏi với vị trí nào của M thì AM lớn nhất ? Vì sao ?
Hướng dẫn giải:
a) Khi HM < HN thì đường xiên AM sẽ tạo với HN một góc tù là $\widehat{AMN}$ và ta có tam giác tù AMN. Khi đó AN là cạnh lớn nhất của tam giác AMN. Suy ra AN > AM.
b)
Khi điểm M trùng với điểm D thì AM lớn nhất, vì:
AD là đường chéo của cả 2 tam giác vuông ACD và ABD, góc đối diện là góc vuông $\widehat{ACD}$ và $\widehat{ABD}$
Theo định lý quan hệ giữa góc và cạnh đối diện, AD sẽ lớn nhất. Suy ra, khi mà M≡D thì AM=AD và AM sẽ lớn nhất.
Bài tập & Lời giải
Bài 9.6 trang 65 toán 7 tập 2 KNTT
Chiều cao của tam giác ứng với một cạnh của nó có phải khoảng cách từ đỉnh đối diện đến đường thẳng chứa cạnh đó không ?
Xem lời giải
Bài 9.7 trang 65 toán 7 tập 2 KNTT
Cho hình vuông ABCD. Hỏi trong 4 đỉnh của hình vuông
a) Đỉnh nào cách đều hai điểm A và C
b) Đỉnh nào cách đều hai đường thẳng AB và AD
Xem lời giải
Bài 9.8 trang 65 toán 7 tập 2 KNTT
Cho tam giác cân ABc, AB=AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.12)
a) Khi M thay đổi thì độ dài AM thay đổi. Xác định vị trí của điểm M đê độ dài AM nhỏ nhất
b) Chứng minh răng với mọi điểm M thì AM<AB
Xem lời giải
Bài 9.9 trang 65 toán 7 tập 2 KNTT
Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên cac cạnh AB, AC ( M,N không phải là đỉnh của tam giác). (H.9.13). Chứng minh rằng MN < BC. Gợi ý, so sánh MN với NB, NB với BC).