Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Tổng hợp kiến thức trọng tâm toán 7 kết nối tri thức bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo

1. SỰ ĐỒNG QUY CỦA BA ĐƯỜNG TRUNG TRỰC TRONG MỘT TAM GIÁC

  • Đường trung trực của tam giác

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Trong một tam giác, đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác. Trên hình 9.37, d là đường trung trực ứng với cạnh BC của tam giác ABC.

? .

Mỗi tam giác có 3 đường trung trực.

  • Sự đồng quy của ba đường trung trực

HĐ1. 

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Ba đường trung tực DP, DQ, DR cùng cắt nhau tại điểm D.

HĐ2. 

a) Gọi M là giao điểm của BC với đường trung trực của BC

=> OM là đường trung trực của BC, OM⊥ BC

Xét ∆OBM và ∆ OCM ta có:

2 tam giác đều vuông tại M

MB= MC ( M là trung điểm của CB)

OM chung

=> ∆OBM = ∆ OCM => OB= OC

Tương tự, ta có OC= OA

b) Từ câu a ta có OA=OB

=> ∆OAB là tam giác cân tại O

Kẻ ON ⊥ AB=> ON là đường trung tuyến của AB và N là trung điểm của AB

=> O thuộc đường trung trực của AB

Định lí 1:

Ba đường trung trực của một tam giác đồng quy tại một điểm. Điểm này cách đều ba đỉnh của tam giác.

Nhận xét:

Vì giao điểm O của ba đường trung trực trong tam giác ABC cách đều ba đỉnh của tam giác đó (OA = OB = OC) nên có một đường tròn tâm O đi qua ba đỉnh A, B, C. (H.9.40)

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Ví dụ 1: (SGK – tr78)

Luyện tập 1:

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Gọi AN, CM, BP là 3 đường trung tuyến của tam giác đều ABC, giao nhau ở điểm G

Xét ∆ ANB và ∆ ANC, có:

 AN chung

NB= NC

AB= AC

=>∆ ANB = ∆ ANC

=> $\widehat{BAN}=\widehat{CAN}$

=> AN hay AG là đường phân giác của $\widehat{BAC}$

Tương tự BP hay BG là đường phân giác của $\widehat{ABC}$

=> G cách đều 3 cạnh AB, AC, BC mag G là trọng tâm

=> G là giao điểm của 3 đường trung trực => G cách đều 3 điểm A,B,C

Vận dụng 1:

- Ba ngôi nhà không thẳng hàng nên tạo thành 1 tam giác, ta gọi là tam giác ABC.

- Điểm khoan giếng cách đều 3 ngôi nhà khi và chỉ khi điểm khoan giếng là giao điểm của 3 đường trung trực của tam giác ABC.

Vậy, ta cần vẽ 2 đường trung trực của tam giác ABC, chúng cắt nhau tại đâu thì đó là điểm cần khoan giếng.

Thử thách nhỏ:

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Vì Q cách đều 3 đỉnh của tam giác ABC nên GA=GB=GC

Vì QA=QB nên Q nằm trên đường trung trực của đoạn thẳng AB (tính chất đường trung trực của đoạn thẳng).

Vì QA=QC nên Q nằm trên đường trung trực của đoạn thẳng AC (tính chất đường trung trực của đoạn thẳng).

Vì QB=QC nên Q nằm trên đường trung trực của đoạn thẳng BC (tính chất đường trung trực của đoạn thẳng).

Vậy Q là giao điểm của 3 đường trung trực của tam giác ABC.

2. SỰ ĐỒNG QUY CỦA BA ĐƯỜNG CAO TRONG TAM GIÁC

  • Đường cao của tam giác

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Trong hình 9.42, đoạn thẳng AI kẻ từ đỉnh A, vuông góc với cạnh đối diện BC là một đường cao của tam giác ABC. Ta còn nói AI  là đường cao xuất phát từ đỉnh A (hay đường cao ứng với cạnh BC).

?.

Mỗi tam giác có 3 đường cao.

( Vì ứng với mỗi cạnh của tam giác, ta có 1 đường cao).

  • Sự đồng quy của ba đường cao

HĐ3: 

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Ba đường cao AN, BP, CM cùng đi qua điểm H.

Định lí 2:

Ba đường cao của tam giác đồng quy tại một điểm.

Chú ý:

a) Điểm đồng quy của ba đường cao của một tam giác gọi là trực tâm của tam giác đó. 

b) Gọi H là trực tâm của tam giác ABC (H.9.44), ta có: 

  • Khi ABC là tam giác nhọn thì H nằm bên trong tam giác. 

  • Khi ABC là tam giác vuông tại A thì H trùng với A (kí hiệu là H A).

  • Khi ABC là tam giác tù thì H nằm bên ngoài tam giác.

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Ví dụ 2: SGK – tr80

Luyện tập 2:

a)

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Gọi AD là đường trung tuyến và đường phân giác tại đỉnh A của ∆ ABC

Xét ∆ ADB và ∆ ADC, có:

AB=AC

DB=DC

AD chung

=>∆ ADB = ∆ ADC (c.c.c)

=>  $\widehat{ADB}=\widehat{ADC}$

Mà $\widehat{ADB}+\widehat{ADC}$= 180°

=> $\widehat{ADB}=\widehat{ADC}$= 90°

=>AD vuông góc với BC

mà DA=DB

=>AD là đường trung trực của tam giác ABC

b) 

Lý thuyết trọng tâm toán 7 kết nối bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

G là điểm cách đều 3 đỉnh của tam giác ABC đều

GM, GN, GP là khoảng cách từ G đến AB, BC, AC

Xét ∆ AGB và ∆ AGC, có:

AG chung

GB= GC

AB= AC

=> ∆ AGB = ∆ AGC (c.c.c)

=> $\widehat{GAB}=\widehat{GAC}$

=> AG là đường phân giác của $\widehat{BAC}$

Tương tự ta có: CG là đường phân giác của $\widehat{ACB}$

=> G là điểm giao nhau giữa 2 đường phân giác AG và CG

=> G cách đều 3 cạnh AB, AC, BC.

Lưu ý:

Trong tam giác cân tại A, đường cao xuất phát từ đỉnh A đồng thời là đường trung trực, đường phân giác, đường trung tuyến của tam giác đó.

Xem thêm các bài Giải toán 7 tập 2 kết nối tri thức, hay khác:

Xem thêm các bài Giải toán 7 tập 2 kết nối tri thức được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 7 giúp bạn học tốt hơn.

Lớp 7 | Để học tốt Lớp 7 | Giải bài tập Lớp 7

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 7, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 7 giúp bạn học tốt hơn.