Lý thuyết trọng tâm toán 7 kết nối bài 2: Các phép tính với số hữu tỉ

Tổng hợp kiến thức trọng tâm toán 7 kết nối tri thức bài 2 Các phép tính với số hữu tỉ. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo

 BÀI 2. CỘNG, TRỪ, NHÂN, CHIA SỐ HỮU TỈ

  1. CỘNG VÀ TRỪ HAI SỐ HỮU TỈ

HĐ1:

Quy tắc cộng 2 phân số:

  • Cùng mẫu: Muốn cộng hai phân số có cùng mẫu số, ta cộng tử số với nhau và giữ nguyên mẫu số.

  • Khác mẫu: Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu.

Quy tắc trừ 2 phân số:

  • Cùng mẫu: Muốn trừ 2 phân số có cùng mẫu số, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu.

  • Khác mẫu: Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó

a) -$\frac{7}{8}$+$\frac{5}{12}$ = -$\frac{21}{24}$+$\frac{10}{24}$ = -$\frac{11}{24}$

b) -$\frac{5}{7}$-$\frac{8}{21}$= -$\frac{15}{21}$-$\frac{8}{21}$ = -$\frac{23}{21}$

HĐ2.

a. 0,25+ 1$\frac{5}{12}$ = $\frac{25}{100}$ + $\frac{17}{12}$

= $\frac{1}{4}$ + $\frac{17}{12}$ = $\frac{3}{12}$+ $\frac{17}{12}$

= $\frac{20}{12}$=$\frac{5}{3}$

b. -1,4-$\frac{3}{5}$= -$\frac{14}{10}$-$\frac{3}{5}$

=-$\frac{14}{10}$-$\frac{6}{10}$=- $\frac{20}{10}$=-2

Kết luận:

Ta có thể cộng, trừ hai số hữu tỉ bằng cách viết chúng dưới dạng phân số rồi áp dụng quy tắc cộng, trừ phân số.

Chú ý:

Nếu hai số hữu tỉ đều được cho dưới dạng số thập phân thì ta áp dụng quy tắc cộng và trừ đối với số thập phân.

Luyện tập 1: 

a. (-7) - (-$\frac{5}{8}$) = (-7)+$\frac{5}{8}$

= -$\frac{56}{8}$+$\frac{5}{8}$= -$\frac{51}{8}$

b. -21,25 + 13,3 

= -$\frac{85}{4}$+$\frac{133}{10}$

= -$\frac{425}{20}$+$\frac{266}{20}$

= -$\frac{159}{20}$

Nhận xét: 

Trong tập các số hữu tỉ Q, ta cũng có quy tắc dấu ngoặc tương tự như trong tập các số nguyên Z.

Chú ý: 

Đối với một tổng trong Q, ta có thể đổi chỗ các số hạng, đặt dấu ngoặc để nhóm các số hạng một cách tùy ý như các tổng trong Z.

Luyện tập 2.

a. $\frac{9}{10}$- ($\frac{6}{5}$-$\frac{7}{4}$) 

= $\frac{9}{10}$-$\frac{6}{5}$+$\frac{7}{4}$ 

= $\frac{18}{20}$-$\frac{24}{20}$+$\frac{35}{20}$= $\frac{29}{20}$

b. 6,5 + [0,75- (8,25-1,75)]

= 6,5 + 0,75 - 8,25 + 1,75

=0,75

Vận dụng 1

Khối lượng các chất khác trong 100g khoai tây khô là: 

100 – (11 + 6,6 + 0,3 + 75,1) = 7 (g)

  1. NHÂN VÀ CHIA HAI SỐ HỮU TỈ

HĐ3.

a. 0,36.-$\frac{5}{9}$ = -$\frac{36}{100}$.-$\frac{5}{9}$=-$\frac{1}{5}$

b. -$\frac{7}{6}$: $\frac{15}{7}$= -$\frac{7}{6}$: $\frac{12}{7}$ 

= -$\frac{7}{6}$ . $\frac{7}{12}$= -$\frac{49}{72}$

⇒ Kết luận: 

Ta có thể nhân, chia hai số hữu tỉ bằng cách viết chúng dưới dạng phân số rồi áp dụng quy tắc nhân, chia phân số.

Luyện tập 3:

a. (-$\frac{9}{13}$). (-$\frac{4}{5}$)= $\frac{36}{65}$

b. -0,7: $\frac{3}{2}$= -$\frac{7}{10}$: $\frac{3}{2}$

= -$\frac{7}{10}$.$\frac{2}{3}$= -$\frac{7}{15}$

Luyện tập 4:

$\frac{7}{6}$.3$\frac{1}{4}$+$\frac{7}{6}$.(-0,25) 

= $\frac{7}{6}$. $\frac{13}{4}$+$\frac{7}{6}$. (-$\frac{1}{4}$)

= $\frac{7}{6}$.($\frac{13}{4}$-$\frac{1}{4}$)

= $\frac{7}{6}$. $\frac{12}{4}$= $\frac{7}{2}$

Chú ý: 

Nếu hai số hữu tỉ đều đuộc cho dưới dạng số thập phân thì ta có thể áp dụng quy tắc nhân và chia đối với số thập phân.

Vận dụng 2:

Diện tích 1 tấm ảnh là:

10.15 = 150 (cm$^{2}$)

Diện tích tấm giấy là:

21,6 . 27,9 = 602,64 (cm$^{2}$)

Diện tích phần giấy ảnh còn lại là:

602,64 – 2.150 = 302,64 (cm$^{2}$)

Ví dụ: 

a) (-0,25).8,2 = -(0,25.8,2) = -2,05

b) (-9,8): (-1,4) = 7

Xem thêm các bài Giải toán 7 tập 1 kết nối tri thức, hay khác:

Xem thêm các bài Giải toán 7 tập 1 kết nối tri thức được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 7 giúp bạn học tốt hơn.

Lớp 7 | Để học tốt Lớp 7 | Giải bài tập Lớp 7

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 7, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 7 giúp bạn học tốt hơn.