Giải câu 1 trang 130 toán VNEN 9 tập 1

D. HOẠT ĐỘNG VẬN DỤNG

Câu 1: Trang 130 sách VNEN 9 tập 1

Cho đường tròn (O) có đường kính AB. Từ điểm H nằm trên AB kẻ dây CD vuông góc với AB. Gọi E, F theo thứ tự là hình chiếu của H trên AC, BC. Gọi I, K lần lượt là trung điểm của AH và HB. Vẽ đường tròn (I; IE) và (K; KF).

a) Hãy xác định vị trí tương đối của các đường tròn: (I) và (O), (K) và (O), (I) và (K).

b) Chứng minh rằng EF = HC.

c) Chứng minh rằng CE.CA = CF.CB.

d) Chứng minh rằng EF là tiếp tuyến chung của hai đường tròn (I) và (K).

e) Xác định vị trí của điểm H để EF có độ dài lớn nhất.

f) Cho AH = 4cm, HB = 9cm. Tính diện tích tứ giác IEFK.

A. $\frac{2\sqrt{3}}{3}$cm.                       B. 3cm                          C. $\frac{2\sqrt{5}}{5}$cm.                 D. $\sqrt{3}$cm.

Hãy chọn phương án đúng.

Bài Làm:

Ta có hình vẽ như sau:

a) (I) và (O) tiếp xúc trong với nhau, (K) và (O) tiếp xúc trong với nhau, (I) và (K) tiếp xúc ngoài với nhau.

b) Tứ giác HECF có $\widehat{ECF}$ = $\widehat{CEF}$ = $\widehat{CFE}$ = $90^{\circ}$ nên tứ giác HECF là hình chữ nhật

$\Rightarrow $ EF = CH (hai đường chéo).

c) Ta có: $\widehat{CEF}$ = $\widehat{CHF}$ (do HECF là hình vuông) = $\widehat{CBH}$ (cùng phụ với $\widehat{FHB}$)

Tam giác vuông CEF và tam giác vuông CBA có: $\widehat{CEF}$ = $\widehat{CBH}$ nên tam giác vuông CEF đồng dạng với tam giác vuông CBA

$\Rightarrow $ $\frac{CE}{CB}$ = $\frac{CF}{CA}$ $\Rightarrow $ CE.CA = CF.CB (đpcm).

d) Tam giác vuông AEH có EI = IH $\Rightarrow $ $\widehat{IEH}$ = $\widehat{IHE}$

Mà $\widehat{IHE}$ = $\widehat{ACH}$ (cùng phụ với $\widehat{CAH}$) = $\widehat{EFH}$ (do HECF là hình vuông)

Mặt khác $\widehat{EFH}$ + $\widehat{HEF}$ = $90^{\circ}$ $\Rightarrow $ $\widehat{IEH}$ + $\widehat{HEF}$ = $90^{\circ}$ $\Rightarrow $ $\widehat{IEF}$ = $90^{\circ}$ hay EI $\perp $ EF (1)

Tương tự ta chứng minh được FK $\perp $ EF (2)

Từ (1) và (2) ta được EF là tiếp tuyến chung của (I) và (K).

e) Ta có: EF = CH $\leq $ CO

Suy ra EF lớn nhất khi CH lớn nhất, khi đó CH = CO hay H $\equiv $ O

Vậy H $\equiv $ O thì EF lớn nhất.

f) EF = CH = $\sqrt{AH.HB}$ = $\sqrt{4.9}$ = 6cm

Diện tích tứ giác IEFK là:

S = $\frac{IE + KF}{2}$.EF =  $\frac{2 + 4,5}{2}$.6 = 19,5 $cm^{2}$.

 

Xem thêm các bài Toán VNEN 9 tập 1, hay khác:

Để học tốt Toán VNEN 9 tập 1, loạt bài giải bài tập Toán VNEN 9 tập 1 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

PHẦN ĐẠI SỐ

Chương 1: Căn bậc hai. Căn bậc ba

Chương 2. Hàm số bậc nhất

PHẦN HÌNH HỌC

Chương 1. Hệ thức lượng trong tam giác vuông

Chương 2. Đường tròn

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.