Giải toán VNEN 9 bài 4: Tính chất đồng biến, nghịch biến của hàm số y = ax + b

Giải bài 4 : Tính chất đồng biến, nghịch biến của hàm số y = ax + b - Sách VNEN toán 9 tập 1 trang 50. Phần dưới sẽ hướng dẫn trả lời và giải đáp các câu hỏi trong bài học.

A. HOẠT ĐỘNG KHỞI ĐỘNG

Thực hiện các hoạt động sau

- Tính giá trị y tương ứng của các hàm số y = x + 1 và y = -x + 1 theo các giá trị đã cho của biến x rồi điền vào bảng sau:

x

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

y = x + 1

 

 

 

 

 

 

 

 

 

y = -x + 1

 

 

 

 

 

 

 

 

 

- Quan sát bảng giá trị trên rồi trả lời các câu hỏi sau:

+) Đối với hàm số y = x + 1, khi cho x các giá trị tùy ý y tăng dần thì các giá trị tương ứng của y tăng lên hay giảm đi?

+) Đối với hàm số y = - x + 1, khi cho x các giá trị tùy ý y tăng dần thì các giá trị tương ứng của y tăng lên hay giảm đi?

Trả lời:

x

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

y = x + 1

 -1,5

-1 

-0,5 

 0.5

 1

 1.5

2.5 

y = -x + 1

3.5

2.5 

1.5 

 1

0.5 

-0.5 

+) Đối với hàm số y = x + 1, khi cho x các giá trị tùy ý y tăng dần thì các giá trị tương ứng của y tăng lên.

+) Đối với hàm số y = - x + 1, khi cho x các giá trị tùy ý y tăng dần thì các giá trị tương ứng của y giảm đi.

B. HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC

1. Đọc kĩ nội dung sau

Cho hàm số y = f(x) xác định với mọi giá trị của x $\in \mathbb{R}$.

  • Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) cũng tăng lên thì hàm số y = f(x) được gọi là hàm đồng biến trên $\mathbb{R}$ (gọi tắt là hàm số đồng biến).
  • Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi thì hàm số y = f(x) được gọi là hàm nghịch  biến trên $\mathbb{R}$ (gọi tắt là hàm số nghịch biến).

2. b) Đọc kĩ nội dung sau

Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc tập $\mathbb{R}$ và có tính chất sau:

  • Đồng biến trên $\mathbb{R}$ , khi a > 0
  • Nghịch biến trên $\mathbb{R}$ , khi a < 0 (h.13)

Giải toán VNEN 9 bài 4: Tính chất đồng biến, nghịch biến của hàm số y = ax + b

c) Trong các hàm số sau, hàm số nào là đồng biến, nghích biến?

y = 8x - 5 ;   y = -3x + 11 ;    y = -49x - 100 ;    y = 0,1 - 0,3x ;  y = 0,3x + 0,1

Trả lời:

Các hàm số đồng biến là y = 8x - 5; y = 0,3x + 0,1

Các hàm sô nghich biến là y = -3x + 11; y = -49x - 100 ; y = 0,1 - 0,3x.

C. HOẠT ĐỘNG LUYỆN TẬP

Câu 1: Trang 52 sách VNEN 9 tập 1

Cho hai hàm số y = f(x) = $\frac{2}{3}$x và y = g(x) = $\frac{2}{3}$x + 3.

a) Tính giá trị tương ứng của mỗi hàm số theo giá trị đã cho của biến x rồi điền vào bảng sau:

b) Hàm số y = f(x) là hàm số đồng biến hay nghịch biến? Vì sao?

Xem lời giải

Câu 2: Trang 52 sách VNEN 9 tập 1

Cho hai hàm số y = 1,5x - 3 và y = -0,6x + 5.

a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của hai hàm số đó.

b) Trong hai hàm số đã cho, hàm số nào đồng biến? Hàm số nào nghịch biến? Vì sao?

Xem lời giải

Câu 3: Trang 52 sách VNEN 9 tập 1

Với giá trị nào của a hàm số y = (a - 2)x + 3:

a) Đồng biến?                                       b) Nghích biến?

Xem lời giải

Câu 4: Trang 52 sách VNEN 9 tập 1

Với giá trị nào của a thì điểm A(a; 2a - 1) thuộc đồ thị hàm số:

a) y = -2x + 3 ;      b) y = -x + 5 ;             c) f(x) = 3x - 1 ;       d) f(x) = $\frac{1}{3}$x - $\frac{2}{3}$?

Xem lời giải

D.E. HOẠT ĐỘNG VẬN DỤNG và TÌM TÒI, MỞ RỘNG

Câu 1: Trang 52 sách VNEN 9 tập 1

Tìm tập xác định của mỗi hàm số sau:

a) y = -4x + 9 ;                                               b) y = $\frac{5}{x - 1}$ ;

c) y = $\frac{x - 1}{x^{2} - 3x + 2}$ ; (HD: Phân tích mẫu thành nhân tử)

d) y = 1 - $\sqrt{4 - x}$ ;                                 e) y = $\frac{5}{\sqrt{1 - 2x}}$

Xem lời giải

Câu 2: Trang 53 sách VNEN 9 tập 1

Hãy xét xem mỗi hàm số sau đồng biến hay nghich biến?

a) y = 2x ;

b) y = -2x ;

c) y = $\sqrt{x - 1}$ khi x $\geq $ 1 (Hướng dẫn: Sử dụng biểu thức liên hợp)

d) y = $\sqrt{9 - x}$ khi x $\leq $ 9.

Xem lời giải

Xem thêm các bài Toán VNEN 9 tập 1, hay khác:

Để học tốt Toán VNEN 9 tập 1, loạt bài giải bài tập Toán VNEN 9 tập 1 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

PHẦN ĐẠI SỐ

Chương 1: Căn bậc hai. Căn bậc ba

Chương 2. Hàm số bậc nhất

PHẦN HÌNH HỌC

Chương 1. Hệ thức lượng trong tam giác vuông

Chương 2. Đường tròn

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.