Giải toán VNEN 9 bài 8: Rút gọn biểu thức chứa căn bậc hai

Giải bài 8: Rút gọn biểu thức chứa căn bậc hai - Sách VNEN toán 9 tập 1 trang 25. Phần dưới sẽ hướng dẫn trả lời và giải đáp các câu hỏi trong bài học.

A. HOẠT ĐỘNG KHỞI ĐỘNG

Đọc sgk toán 9 trang 26

B. HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC

1. a) Đọc hiểu nội dung

  • Để rút gọn biểu thức có chứa căn thức bậc hai, ta cần biết vận dụng thích hợp các phép tính và các phép biến đổi đã biết như: đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, khử căn các biểu thức chứa căn để làm xuất hiện các căn thức bậc hai có cùng một biểu thức dưới dấu căn (căn đồng dạng).

Ví dụ 1: Rút gọn các biểu thức sau:

a) $\sqrt{\frac{3}{4}}$ + $\sqrt{\frac{1}{3}}$ + $\sqrt{\frac{1}{12}}$ ;             

b) $\frac{10}{9}$($\sqrt{0,8}$ + $\sqrt{1,25}$) ;

c) 4$\sqrt{\frac{2}{9}}$ + $\sqrt{2}$ + $\sqrt{\frac{1}{18}}$ ;                         

d) $\frac{1}{\sqrt{5} - 1}$ - $\frac{1}{\sqrt{5} + 1}$.

Trả lời:

a) $\sqrt{\frac{3}{4}}$ + $\sqrt{\frac{1}{3}}$ + $\sqrt{\frac{1}{12}}$ = $\sqrt{\frac{9}{12}}$ + $\sqrt{\frac{4}{12}}$ + $\sqrt{\frac{1}{12}}$ = $\frac{3}{\sqrt{12}}$ + $\frac{2}{\sqrt{12}}$ + $\frac{1}{\sqrt{12}}$  = $\frac{6}{\sqrt{12}}$ = $\frac{6\sqrt{12}}{12}$.

b) $\frac{10}{9}$($\sqrt{0,8}$ + $\sqrt{1,25}$) = $\frac{10}{9}$($\sqrt{\frac{4}{5}}$ + $\sqrt{\frac{5}{4}}$) = $\frac{10}{9}$($\sqrt{\frac{16}{20}}$ + $\sqrt{\frac{25}{20}}$) = $\frac{10}{9}$($\frac{4}{\sqrt{20}}$+ $\frac{5}{\sqrt{20}}$) = $\frac{10}{9}$.$\frac{9}{\sqrt{20}}$ = $\frac{10}{\sqrt{20}}$ = $\sqrt{5}$

c) 4$\sqrt{\frac{2}{9}}$ + $\sqrt{2}$ + $\sqrt{\frac{1}{18}}$ =  4$\sqrt{\frac{4}{18}}$ + $\sqrt{\frac{36}{18}}$ + $\sqrt{\frac{1}{18}}$ = $\frac{8}{\sqrt{18}}$ + $\frac{6}{\sqrt{18}}$ + $\frac{1}{\sqrt{18}}$ = $\frac{15}{\sqrt{18}}$ = $\frac{5\sqrt{2}}{\sqrt{2}}$.

d) $\frac{1}{\sqrt{5} - 1}$ - $\frac{1}{\sqrt{5} + 1}$ = $\frac{\sqrt{5} + 1}{(\sqrt{5} - 1)(\sqrt{5} + 1)}$ - $\frac{\sqrt{5} - 1}{(\sqrt{5} + 1)(\sqrt{5} - 1)}$ = $\frac{\sqrt{5} + 1 - \sqrt{5} + 1}{(\sqrt{5} - 1)(\sqrt{5} + 1)}$ = $\frac{2}{5 - 1}$ = $\frac{1}{2}$.

Ví dụ 2: Rút gọn các biểu thức sau:

a) 6$\sqrt{a}$ + $\frac{2}{3}$$\sqrt{\frac{a}{4}}$ - a$\sqrt{\frac{9}{a}}$ + $\sqrt{7}$ với a > 0 ;

b) 11$\sqrt{5a}$ - $\sqrt{125a}$ + $\sqrt{20a}$ - 4$\sqrt{45a}$ + 9$\sqrt{a}$ ;

c) 5a$\sqrt{25ab^{3}}$ - $\sqrt{3}$$\sqrt{12a^{3}b^{3}}$ + 9ab$\sqrt{9ab}$ - 5b$\sqrt{81a^{3}b}$ với b $\geq $ 0, a $\geq $ 0 ;

d) $\sqrt{\frac{a}{b}}$ + $\sqrt{ab}$ - $\frac{a}{b}$$\frac{b}{a}$ với a > 0, b > 0.

Trả lời:

a) 6$\sqrt{a}$ + $\frac{2}{3}$$\sqrt{\frac{a}{4}}$ - a$\sqrt{\frac{9}{a}}$ + $\sqrt{7}$ = 6$\sqrt{a}$ + $\frac{2}{3}$$\frac{\sqrt{a}}{2}$  - a$\sqrt{\frac{9a}{a^{2}}}$ + $\sqrt{7}$ = 6$\sqrt{a}$ + $\frac{\sqrt{a}}{3}$  - 3$\sqrt{a}$ + $\sqrt{7}$ = $\frac{10}{3}$$\sqrt{a}$ + $\sqrt{7}$

b) 11$\sqrt{5a}$ - $\sqrt{125a}$ + $\sqrt{20a}$ - 4$\sqrt{45a}$ + 9$\sqrt{a}$ = 11$\sqrt{5a}$ - 5$\sqrt{5a}$ + 2$\sqrt{5a}$ - 12$\sqrt{5a}$ + 9$\sqrt{a}$ = - 4$\sqrt{5a}$ + 9$\sqrt{a}$ =  (9 - 4$\sqrt{5}$)$\sqrt{a}$.

c) 5a$\sqrt{25ab^{3}}$ - $\sqrt{3}$$\sqrt{12a^{3}b^{3}}$ + 9ab$\sqrt{9ab}$ - 5b$\sqrt{81a^{3}b}$ = 25ab$\sqrt{ab}$ - 6ab$\sqrt{ab}$ + 27ab$\sqrt{ab}$ - 45ab$\sqrt{ab}$ = ab$\sqrt{ab}$.

d) $\sqrt{\frac{a}{b}}$ + $\sqrt{ab}$ - $\frac{a}{b}$$\frac{b}{a}$ = $\sqrt{\frac{ab}{b^{2}}}$ + $\sqrt{ab}$ - $\frac{a}{b}$$\frac{ab}{a^{2}}$ = $\frac{\sqrt{ab}}{b}$ + $\sqrt{ab}$ - $\frac{\sqrt{ab}}{b}$ = $\sqrt{ab}$.

Ví dụ 3: Chứng minh các đẳng thức sau:

a) $\left (\frac{\sqrt{14} - \sqrt{7}}{1 - \sqrt{2}} +  \frac{\sqrt{15} - \sqrt{5}}{1 - \sqrt{3}}  \right )$ : $\frac{1}{\sqrt{7} - \sqrt{5}}$ = - 2

b)  $\frac{a + b}{b^{2}}$.$\sqrt{\frac{a^{2}b^{4}}{a^{2} + 2ab + b^{2}}}$ = $\left | a \right |$ với a + b > 0 và b $\neq $ 0 ;

c) $\frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{ab}}$ : $\frac{1}{\sqrt{a} - \sqrt{b}}$ = a - b với a > 0, b > 0, a $\neq $ b ;

d) $\left ( \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}} - \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}  \right )$ : $\frac{\sqrt{xy}}{x - y}$ với x > 0, y > 0, x $\neq $ y.

Trả lời:

a) Biến đổi vế trái ta có:

$\left (\frac{\sqrt{14} - \sqrt{7}}{1 - \sqrt{2}} +  \frac{\sqrt{15} - \sqrt{5}}{1 - \sqrt{3}}  \right )$ : $\frac{1}{\sqrt{7} - \sqrt{5}}$

= $\left \lfloor \frac{\sqrt{7}(1 - \sqrt{2})}{1 - \sqrt{2}} +  - \frac{\sqrt{5}(1  - \sqrt{3})}{1 - \sqrt{3}} \right \rfloor$ : $\frac{1}{\sqrt{7} - \sqrt{5}}$

= - ($\sqrt{7}$ + $\sqrt{5}$)($\sqrt{7}$ - $\sqrt{5}$) = - (7 - 5) = - 2.

Sau khi biến đổi, ta thấy vế trái bằng vế phải. Vậy đẳng thức được chứng minh.

b) Biến đổi vế trái ta có:

$\frac{a + b}{b^{2}}$.$\sqrt{\frac{a^{2}b^{4}}{a^{2} + 2ab + b^{2}}}$ 

= $\frac{a + b}{b^{2}}$.$\sqrt{\frac{a^{2}b^{4}}{(a + b)^{2}}}$ = $\frac{a + b}{b^{2}}$.$\frac{\left | a \right |.b^{2}}{a + b}$ = $\left | a \right |$

Sau khi biến đổi, ta thấy vế trái bằng vế phải. Vậy đẳng thức được chứng minh.

c) Biến đổi vế trái ta có:

$\frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{ab}}$ : $\frac{1}{\sqrt{a} - \sqrt{b}}$ 

= $\frac{\sqrt{ab}(\sqrt{a} + \sqrt{b})}{\sqrt{ab}}$.($\sqrt{a}$ - $\sqrt{b}$)

= ($\sqrt{a}$ + $\sqrt{b}$).($\sqrt{a}$ - $\sqrt{b}$) = a - b

Sau khi biến đổi, ta thấy vế trái bằng vế phải. Vậy đẳng thức được chứng minh.

d) Biến đổi vế trái ta có:

$\left ( \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}} - \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}  \right )$ : $\frac{\sqrt{xy}}{x - y}$ 

= $\left \lfloor \frac{(\sqrt{x} + \sqrt{y})^{2}}{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})} - \frac{(\sqrt{x} - \sqrt{y})^{2}}{(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})} \right \rfloor$ . $\frac{x - y}{\sqrt{xy}}$

= $\frac{ x + 2\sqrt{xy} + y - x + 2\sqrt{xy} - y}{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}$.$\frac{x - y}{\sqrt{xy}}$

= $\frac{4\sqrt{xy}}{x - y}$.$\frac{x - y}{\sqrt{xy}}$ = 4

Sau khi biến đổi, ta thấy vế trái bằng vế phải. Vậy đẳng thức được chứng minh.

C. HOẠT ĐỘNG LUYỆN TẬP

Câu 1: Trang 28 sách VNEN 9 tập 1

Rút gọn các biểu thức sau:

a) $\frac{1}{4}$$\sqrt{180}$ + $\sqrt{20}$ - $\sqrt{45}$ + 5 ;                   b) 3$\sqrt{\frac{1}{3}}$ + $\frac{1}{4}$$\sqrt{48}$ - 2$\sqrt{3}$ ;

c) $\sqrt{2a}$ - $\sqrt{18a^{3}}$ + 4$\sqrt{\frac{a}{2}}$ ;                  d) $\sqrt{\frac{a}{1 + 2b + b^{2}}}$.$\sqrt{\frac{4a + 8ab + 4ab^{2}}{225}}$.

Xem lời giải

Câu 2: Trang 28 sách VNEN 9 tập 1

Chứng minh các đẳng thức sau:

a) $\sqrt{\frac{2} - \sqrt{3}}{\frac{2} + \sqrt{3}}$ + $\sqrt{\frac{2} + \sqrt{3}}{\frac{2}-  \sqrt{3}}$ = 4 ;

b) $\frac{\sqrt{a}}{\sqrt{a} - \sqrt{b}}$ - $\frac{\sqrt{b}}{\sqrt{a} + \sqrt{b}}$ - $\frac{2b}{a - b}$ = 1 với a $\geq $ 0, b $\geq $ 0, a $\neq $ b

c) $\left ( 1 + \frac{a + \sqrt{a}}{\sqrt{a} + 1} \right )$$\left ( 1 - \frac{a - \sqrt{a}}{\sqrt{a} - 1} \right )$ = 1 - a với a > 0, a $\neq $ 1.

Xem lời giải

Câu 3: Trang 28 sách VNEN 9 tập 1

Chứng minh rằng giá trị của biểu thức M không phụ thuộc vào a:

M = $\left ( \frac{1}{2 + 2\sqrt{a}} + \frac{1}{2 - 2\sqrt{a}} - \frac{a^{2} + 1}{1 - a^{2}} \right )$$\left ( 1 + \frac{1}{a} \right )$ với a > 0; a $\neq $ 1.

Xem lời giải

Câu 4: Trang 28 sách VNEN 9 tập 1

Tìm x, biết:

a) $\sqrt{3x}$ = 4 ;            b) $\sqrt{3x}$ - $\frac{1}{2}$$\sqrt{3x}$ + $\frac{3}{4}$$\sqrt{3x}$ + 5 = 5$\sqrt{3x}$  ;                  c) $\sqrt{(1 - 2x)^{2}}$ = 2.

Xem lời giải

Câu 5: Trang 28 sách VNEN 9 tập 1

Cho biểu thức:

A = $\left ( \frac{3}{\sqrt{1 + a}} + \sqrt{1 - a} \right )$ : $\left ( \frac{3}{\sqrt{1 - a^{2}} + 1} \right )$ với - 1 < a < 1.

a) Rút gọn biểu thức A.

b) Tìm giá trị của A với a = $\frac{\sqrt{3}}{2 + \sqrt{3}}$.

c) Với giá trị nào của a thì $\sqrt{A}$ > A?

Xem lời giải

Câu 6: Trang 28 sách VNEN 9 tập 1

Cho M = $\frac{x\sqrt{x} - 1}{x - \sqrt{x}}$ - $\frac{x\sqrt{x} + 1}{x + \sqrt{x}}$ + $\frac{x + 1}{\sqrt{x}}$ với x > 0, x $\neq $ 1.

a) Rút gọn biểu thức M.                                           

b) Tìm x để M = $\frac{9}{2}$.

c) So sánh M và 4.

Xem lời giải

D.E. HOẠT ĐỘNG VẬN DỤNG và TÌM TÒI, MỞ RỘNG

Câu 1: Trang 29 sách VNEN 9 tập 1

Phân tích ra thừa số:

a) x - 9 với x > 0 ;                                                                   b) x - 5$\sqrt{x}$ + 4 ;

c) 6$\sqrt{xy}$ - 4x$\sqrt{x}$ - 9y$\sqrt{y}$ + 6xy ;                              d) x - 2$\sqrt{x - 1}$ - $a^{2}$.

Xem lời giải

Câu 2: Trang 29 sách VNEN 9 tập 1

Chứng minh các bất đẳng thức sau:

a) Cho a > 0 chứng minh rằng a + $\frac{1}{a}$ $\geq $ 2.

b) $\frac{a^{2} + a + 2}{\sqrt{a^{2} + a + 1}}$ $\geq $ 2 với mọi a.

c) $\sqrt{a + 1}$ - $\sqrt{a}$ <  $\frac{1}{2\sqrt{a}}$ với a $\geq $ 1.

Xem lời giải

Câu 3: Trang 29 sách VNEN 9 tập 1

a) Cho a $\geq $ 0, b $\geq $ 0. Chứng minh rằng:

* $\sqrt{a + b}$ $\leq $ $\sqrt{a}$ + $\sqrt{b}$ ;                              * $\sqrt{a - b}$ $\geq $ $\sqrt{a}$ - $\sqrt{b}$

Áp dụng: Tìm giá trị nhỏ nhất của B = $\sqrt{x - 5}$ + $\sqrt{7 - x}$ và giá trị lớn nhất của C = $\sqrt{2x - 7}$ - $\sqrt{2x - 11}$.

Xem lời giải

Xem thêm các bài Toán VNEN 9 tập 1, hay khác:

Để học tốt Toán VNEN 9 tập 1, loạt bài giải bài tập Toán VNEN 9 tập 1 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

PHẦN ĐẠI SỐ

Chương 1: Căn bậc hai. Căn bậc ba

Chương 2. Hàm số bậc nhất

PHẦN HÌNH HỌC

Chương 1. Hệ thức lượng trong tam giác vuông

Chương 2. Đường tròn

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.