Giải toán VNEN 9 bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai

Giải bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai - Sách VNEN toán 9 tập 1 trang 20. Phần dưới sẽ hướng dẫn trả lời và giải đáp các câu hỏi trong bài học.

A.B. HOẠT ĐỘNG KHỞI ĐỘNG và HÌNH THÀNH KIẾN THỨC

1.b) Đọc kĩ nội dung sau

  • Với hai biểu thức A, B mà B $\geq $ 0, ta có tức là: $\sqrt{A^{2}.B}=|A|\sqrt{B}$
  • Nếu A $\geq $ 0 và B $\geq $ 0 thì $\sqrt{A^{2}.B}=A\sqrt{B}$;
  • Nếu A < 0 và B $\geq $ 0 thì $\sqrt{A^{2}.B}=-A\sqrt{B}$.

Ví dụ: Đưa thừa số ra ngoài dấu căn:

a) $\sqrt{27x^{2}y^{4}}$ với x $\geq $ 0 ;                        b) $\sqrt{125x^{4}y^{2}}$ với y < 0 ;

c) $\sqrt{13xy^{2}}$ với x $\geq $ 0, y < 0 ;                    d) $\frac{1}{2yz}$$\sqrt{4y^{3}z^{2}}$ với y,z > 0.

Trả lời:

a) Ta có:

$\sqrt{27x^{2}y^{4}}$ = $\sqrt{3^{2}.3.x^{2}y^{4}}$ = 3$\sqrt{3}$x$y^{2}$

b) Ta có:

$\sqrt{125x^{4}y^{2}}$ = $\sqrt{5^{2}.5.x^{4}y^{2}}$ = 5$\sqrt{5}$$x^{2}$y.

c) Ta có:

$\sqrt{13xy^{2}}$ = y$\sqrt{13x}$

d) Ta có:

$\frac{1}{2yz}$$\sqrt{4y^{3}z^{2}}$ = $\frac{1}{2yz}$.2yz$\sqrt{y}$ = $\sqrt{y}$.

2. a) Đọc kĩ nội dung sau

  • Với A $\geq $ 0 và B $\geq $ 0 ta có $A\sqrt{B}=\sqrt{A^{2}.B}$;
  • Với A < 0 và B $\geq $ 0 ta có $A\sqrt{B}=-\sqrt{A^{2}.B}$.

b) So sánh:

2$\sqrt{10}$ và $\sqrt{41}$ ;                    2$\sqrt{3}$ và $\sqrt{18}$ ;

3$\sqrt{11}$ và 2$\sqrt{23}$ ;                  $\frac{5}{4}$$\sqrt{2}$ và $\frac{2}{3}$$\sqrt{7}$

Trả lời:

* Ta có: 2$\sqrt{10}$ = $\sqrt{2^{2}}$.$\sqrt{10}$ = $\sqrt{2^{2}.10}$ = $\sqrt{40}$

        Vì: $\sqrt{40}$ < $\sqrt{41}$ nên 2$\sqrt{10}$ < $\sqrt{41}$.

* Ta có: 2$\sqrt{3}$ = $\sqrt{2^{2}}$.$\sqrt{3}$ = $\sqrt{2^{2}.3}$ = $\sqrt{12}$

        Vì: $\sqrt{12}$ < $\sqrt{18}$ nên 2$\sqrt{3}$ < $\sqrt{18}$.

* Ta có: 3$\sqrt{11}$ = $\sqrt{3^{2}}$.$\sqrt{11}$ = $\sqrt{3^{2}.11}$ = $\sqrt{99}$

             2$\sqrt{23}$ = $\sqrt{2^{2}}$.$\sqrt{23}$ = $\sqrt{2^{2}.23}$ = $\sqrt{92}$

        Vì: $\sqrt{99}$ > $\sqrt{92}$ nên 3$\sqrt{11}$ < 2$\sqrt{23}$.

* Ta có:  $\frac{5}{4}$$\sqrt{2}$ = $\sqrt{(\frac{5}{4})^{2}}$.$\sqrt{2}$ = $\sqrt{(\frac{5}{4})^{2}.2}$ = $\sqrt{\frac{25}{8}}$

              $\frac{2}{3}$$\sqrt{7}$ = $\sqrt{(\frac{2}{3})^{2}}$.$\sqrt{7}$ = $\sqrt{(\frac{2}{3})^{2}.7}$ = $\sqrt{\frac{28}{9}}$

        Vì: $\sqrt{\frac{25}{8}}$ > $\sqrt{\frac{28}{9}}$ nên $\frac{5}{4}$$\sqrt{2}$ > $\frac{2}{3}$$\sqrt{7}$.

3. a) Đọc kĩ nội dung sau

  • Khi biến đổi biểu thức chứa căn thức bậc hai, người ta có thể sử dụng phép khử mẫu của biểu thức lấy căn.

4. a) Đọc kĩ nội dung sau

  • Với các biểu thức A, B mà A.B $\geq $ 0 và B $\neq $ 0 ta có: $\sqrt{\frac{A}{B}}=\frac{\sqrt{A.B}}{|B|}$
  • Với các biểu thức A, B mà B > 0 ta có: $\frac{A}{\sqrt{B}}=\frac{A.\sqrt{B}}{B}$
  • Với các biểu thức A, B, C mà A $\geq $ 0 và A $\neq $ B$^{2}$, ta có: $\frac{C}{\sqrt{A}\pm B}=\frac{C.(\sqrt{A}\mp B)}{A-B^{2}}$
  • Với các biểu  thức A, B, C mà A $\geq $ 0, B $\geq $ 0 và A $\neq $ B ta có: $\frac{C}{\sqrt{A}\pm \sqrt{B}}=\frac{C.(\sqrt{A}\mp \sqrt{B})}{A-B}$

b) Khử mẫu của biểu thức lấy căn:

a) $\sqrt{\frac{13}{540}}$ ;             

b) $\sqrt{\frac{2x}{y}}$ với x $\geq $ 0, y > 0 ;                         

c) $\sqrt{\frac{15x}{31y}}$ với x > 0, y > 0.

Trả lời:

a) Ta có:

$\sqrt{\frac{13}{540}}$ = $\frac{\sqrt{13}}{\sqrt{540}}$ = $\frac{\sqrt{13}.\sqrt{540}}{\sqrt{540}.\sqrt{540}}$ =  $\frac{6\sqrt{540}}{540}$.

b) Ta có:

$\sqrt{\frac{2x}{y}}$ = $\frac{\sqrt{2x}}{\sqrt{y}}$ = $\frac{\sqrt{2x}.\sqrt{y}}{\sqrt{y}.\sqrt{y}}$ = $\frac{\sqrt{2xy}}{y}$.

c) Ta có:

$\sqrt{\frac{15x}{31y}}$ = $\frac{\sqrt{15x}}{\sqrt{31y}}$ = $\frac{\sqrt{15x}.\sqrt{31y}}{\sqrt{31y}.\sqrt{31y}}$ = $\frac{\sqrt{465xy}}{31y}$.

c) Trục căn thức ở mẫu:

a) $\frac{13}{\sqrt{2b}}$ với b $\geq $ 0 ;                               

b) $\frac{3b}{\sqrt{b - 1}}$ với b $\geq $ 0 và b $\neq $ 1.

Trả lời:

a) $\frac{13}{\sqrt{2b}}$ = $\frac{13.\sqrt{2b}}{\sqrt{2b}.\sqrt{2b}}$ = $\frac{13\sqrt{2b}}{2b}$.

b) $\frac{3b}{\sqrt{b - 1}}$ = $\frac{3b.\sqrt{b - 1}}{\sqrt{b - 1}.\sqrt{b - 1}}$ = $\frac{3b\sqrt{b - 1}}{b -1}$.

C. HOẠT ĐỘNG LUYỆN TẬP

Câu 1: Trang 22 sách VNEN 9 tập 1

Khẳng định nào sau đây là đúng?

a) 3$\sqrt{5}$ = $\sqrt{30}$ ;                  b) -3$\sqrt{5}$ = -$\sqrt{30}$ ;      c) -3$\sqrt{5}$ = -$\sqrt{45}$ ;       d) -3$\sqrt{5}$ = $\sqrt{45}$

Xem lời giải

Câu 2: Trang 23 sách VNEN 9 tập 1

Khẳng định nào sau đây là sai:

a) $\sqrt{(-3)^{2}.5}$ = -3$\sqrt{5}$ ;                                       b) $\sqrt{3^{2}.5}$ = 3$\sqrt{5}$ ;

c) $\sqrt{9x^{2}}$ = -3x với x $\leq $ 0;                                   d) $\sqrt{(x - 3)^{2}}$ = 3 - x với x $\leq $ 3.

Xem lời giải

Câu 3: Trang 23 sách VNEN 9 tập 1

Khoanh vào chữ đặt trước câu trả lời đúng:

Giá trị của biểu thức $\frac{1}{\sqrt{3} + \sqrt{2}}$ - $\frac{1}{\sqrt{3} - \sqrt{2}}$ bằng

A. 0                         B. 4                      C.2$\sqrt{2}$                           D. - 2$\sqrt{2}$

Xem lời giải

Câu 4: Trang 23 sách VNEN 9 tập 1

Khoanh vào chữ đặt trước câu trả lời đúng:

Trục căn thức ở mẫu của $\frac{\sqrt{7}}{4 + \sqrt{17}}$ ta được:

A. 4                          B. $\frac{1}{4}$                  C. $\sqrt{17}$(4- $\sqrt{17}$)                    D. $\sqrt{17}$($\sqrt{17}$ - 4)

Xem lời giải

Câu 5: Trang 23 sách VNEN 9 tập 1

Rút gọn các biểu thức (giả sử các biểu thức đều có nghĩa):

a) $\sqrt{\frac{x}{y^{3}} + \frac{2x}{y^{4}}}$ ;                                   b) $\frac{x - \sqrt{xy}}{\sqrt{x} - \sqrt{y}}$ ; 

c) (a - b)$\sqrt{\frac{a^{2}b^{2}}{(a - b)^{2}}}$ ;                                d) $\frac{a - \sqrt{3a} + 3}{a\sqrt{a} + 3\sqrt{3}}$.

Xem lời giải

Câu 6: Trang 23 sách VNEN 9 tập 1

So sánh (không dùng bảng số hay máy tính cầm tay):

a) $\frac{1}{7}$$\sqrt{51}$ với $\frac{1}{9}$$\sqrt{150}$ ;                       

b) $\sqrt{2017}$ - $\sqrt{2016}$ với $\sqrt{2016}$ - $\sqrt{2015}$.

Xem lời giải

Câu 7: Trang 23 sách VNEN 9 tập 1

Thực hiện phép tính:

a) $\frac{1}{\sqrt{3} - 1}$ - $\frac{1}{\sqrt{3} + 1}$ ;                                      b) $\frac{\sqrt{2} - 1}{\sqrt{2} + 2}$ - $\frac{1}{1 + \sqrt{2}}$ + $\frac{\sqrt{2} + 1}{\sqrt{2}}$ ;

c) $\sqrt{x}$ - 2 + $\frac{10 - x}{\sqrt{x} + 2}$ với x $\geq $ 0 ;                        d) $\frac{x\sqrt{x} - y\sqrt{y}}{\sqrt{x} - \sqrt{y}}$ với x $\geq $ 0, y $\geq $ 0 và x $\neq $ y.

Xem lời giải

Câu 8: Trang 23 sách VNEN 9 tập 1

Tìm x, biết:

a) $\sqrt{2x + 3}$ = 3 - $\sqrt{5}$ ;                                 b) $\sqrt{5 + \sqrt{7x}}$ = 2 + $\sqrt{7}$ ;

c) ($\sqrt{x}$ - 2)(5 - $\sqrt{x}$) = 4 - x ;                           d) $\frac{1}{2}$$\sqrt{x - 1}$ - $\frac{3}{2}$$\sqrt{9x - 9}$ + 24$\sqrt{\frac{x - 1}{64}}$ = -17

Xem lời giải

Câu 9: Trang 24 sách VNEN 9 tập 1

Chứng minh đẳng thức:

a) $\frac{3}{2}$$\sqrt{6}$ + 2$\sqrt{\frac{2}{3}}$ - 4$\sqrt{\frac{3}{2}}$ = $\frac{\sqrt{6}}{6}$ ;

b) $\frac{x\sqrt{y} + y\sqrt{x}}{\sqrt{xy}}$ : $\frac{1}{\sqrt{x} - \sqrt{y}}$ = x - y với x > 0, y > 0, x $\neq $ y ;

c) $\frac{\sqrt{y}}{x - \sqrt{xy}}$ + $\frac{\sqrt{x}}{y - \sqrt{xy}}$ = $\frac{\sqrt{x} + \sqrt{y}}{\sqrt{xy}}$ với x > 0, y > 0, x $\neq $ y.

Xem lời giải

Câu 10: Trang 24 sách VNEN 9 tập 1

Cho biểu thức:

P = $\left (\frac{\sqrt{x}}{x - 4} + \frac{1}{ \sqrt{x} - 2}  \right )$.$\frac{\sqrt{x} - 2}{2}$ với x $\geq $ 0, x $\neq $ 4.

a)  Tìm giá trị của P khi x = 64

b) Rút gọn biểu thức P ;

c) Tìm các giá trị của x để biểu thức 2P nhận giá trị nguyên.

Xem lời giải

D. HOẠT ĐỘNG VẬN DỤNG

Câu 1: Trang 24 sách VNEN 9 tập 1

Giải phương trình:

x - 7$\sqrt{x - 3}$ + 9 = 0

Xem lời giải

Câu 2: Trang 24 sách VNEN 9 tập 1

Chỉ ra chỗ sai trong các biến đổi sau:

a) x$\sqrt{\frac{2}{5}}$ = $\sqrt{\frac{2^{2}}{5}}$ ;                          b) ab$\sqrt{\frac{a}{b}}$ = a$\sqrt{\frac{ab^{2}}{b}}$ = a$\sqrt{ab}$.

Xem lời giải

Câu 3: Trang 24 sách VNEN 9 tập 1

Chứng minh giá trị các biểu thức sau là nguyên:

A = $\sqrt{3 - 2\sqrt{2}}$ - $\sqrt{3 + 2\sqrt{2}}$ ;                                      B = 2$\sqrt{9 - 4\sqrt{5}}$ - $\sqrt{21 - 4\sqrt{5}}$

Xem lời giải

E. HOẠT ĐỘNG TÌM TÒI, MỞ RỘNG

Câu 1: Trang 24 sách VNEN 9 tập 1

Em có biết?

Biết diện tích Trái Đất khoảng 510 triệu $km^{2}$, em hãy tính ước lượng bán kính Trái Đất và độ dài đường tròn xích đạo.

Xem lời giải

Xem thêm các bài Toán VNEN 9 tập 1, hay khác:

Để học tốt Toán VNEN 9 tập 1, loạt bài giải bài tập Toán VNEN 9 tập 1 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

PHẦN ĐẠI SỐ

Chương 1: Căn bậc hai. Căn bậc ba

Chương 2. Hàm số bậc nhất

PHẦN HÌNH HỌC

Chương 1. Hệ thức lượng trong tam giác vuông

Chương 2. Đường tròn

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.