Giải toán VNEN 9 bài 10: Ôn tập chương I

Giải bài 10: Ôn tập chương I - Sách VNEN toán 9 tập 1 trang 32. Phần dưới sẽ hướng dẫn trả lời và giải đáp các câu hỏi trong bài học.

C. HOẠT ĐỘNG LUYỆN TẬP

Tổng kết các kiến thức cơ bản về căn bậc hai bằng sơ đồ tư duy

Giải toán VNEN 9 bài 10: Ôn tập chương I

Câu 1: Trang 33 sách VNEN 9 tập 1

Kết quả nào sau đây đúng?

A. $\sqrt{\frac{6}{(- 5)^{2}}}$ = $\frac{\sqrt{6}}{- 5}$ ;                                 B. $\sqrt{\frac{6}{(- 5)^{2}}}$ = $\frac{\sqrt{6}}{5}$ ;

C. $\sqrt{\frac{2}{a^{2}}}$ = $\frac{\sqrt{2}}{a}$ ;                                       D. $\sqrt{\frac{16}{a^{2}}}$ = $\frac{4}{a}$

Xem lời giải

Câu 2: Trang 33 sách VNEN 9 tập 1

Rút gọn biểu thức $\sqrt{3 - 2\sqrt{2}}$ + $\sqrt{3 + 2\sqrt{2}}$ ta được kết quả là:

A. 6 ;                     B.  $\sqrt{6}$ ;                          C. 2;                            D.2$\sqrt{2}$

Xem lời giải

Câu 3: Trang 33 sách VNEN 9 tập 1

Khẳng định nào sau đây là đúng?

A. $\sqrt{100 + x}$ có nghĩa với mọi x ;                                           B. $\sqrt{x^{2} + 25}$ có nghĩa với x $\neq $ 5 vàx $\neq $ - 5 ;

C. $\frac{1}{\sqrt{x^{3} + 4}}$ có nghĩa với mọi x ;                           D. $\frac{1}{\sqrt{x^{2} + 4}}$ có nghĩa với mọi x.

Xem lời giải

Câu 4: Trang 33 sách VNEN 9 tập 1

Thực hiện phép tính:

a) $\left ( \sqrt{\frac{9}{2}} + \sqrt{\frac{1}{2}} - \sqrt{2} \right )$.$\sqrt{2}$ ;                           b) ($\sqrt{3}$ - $\sqrt{2}$ + 1)($\sqrt{3}$ - 1) ;

c) $(\sqrt{2} + \sqrt{5})^{2}$ ;                                                    d) ($\sqrt{8}$ - 5$\sqrt{2}$ + $\sqrt{20}$).$\sqrt{5}$ - $\left ( 3\sqrt{\frac{1}{10}} + 10 \right )$

Xem lời giải

Câu 5: Trang 33 sách VNEN 9 tập 1

Giải phương trình:

a) $\frac{1}{2}$$\sqrt{x - 2}$ - $\frac{3}{2}$$\sqrt{9x - 18}$ + 24$\sqrt{\frac{x - 2}{64}}$ = -17

b) -5x + 7$\sqrt{x}$ + 12 = 0.

Xem lời giải

Câu 6: Trang 33 sách VNEN 9 tập 1

Chứng minh đẳng thức:

a) $\frac{5}{4 - \sqrt{11}}$ + $\frac{1}{3 + \sqrt{7}}$ -  $\frac{6}{\sqrt{7} - 2}$ - $\frac{\sqrt{7} - 5}{2}$ = 4 + $\sqrt{11}$ - 3$\sqrt{7}$ ;

b) $\frac{\sqrt{x} + \sqrt{y}}{2(\sqrt{x} - \sqrt{y})}$ - $\frac{\sqrt{x} - \sqrt{y}}{2(\sqrt{x} + \sqrt{y})}$ - $\frac{y + x}{y - x}$ = $\frac{\sqrt{x} = \sqrt{y}}{\sqrt{x} - \sqrt{y}}$.

Xem lời giải

Câu 7: Trang 33 sách VNEN 9 tập 1

Cho biểu thức: P = $\frac{1}{2\sqrt{x} - 2}$ - $\frac{1}{2\sqrt{x} + 2}$ + $\frac{\sqrt{x}}{1 - x}$ với x $\geq $ 0, x $\neq $ 1

a) Rút gọn biểu thức P.                   b) Tính giá trị của P với x = $\frac{4}{9}$.

c) Tìm giá trị của x để $\left | P \right |$ = $\frac{1}{3}$

Xem lời giải

Câu 8: Trang 34 sách VNEN 9 tập 1

Cho hai biểu thức: A = $\frac{a^{2} + \sqrt{a}}{a - \sqrt{a} + 1}$ và B = $\frac{2a + \sqrt{a}}{\sqrt{a}}$ - 1 với a > 0.

a) Tính giá trị của biểu thức B khi a = 19 - 8$\sqrt{3}$

b) Rút gọn biểu thức A - B ;

c) Tính giá trị của a để A - B = 2 ;

d) Tìm giá trị của a để biểu thức A - B đạt giá trị nhỏ nhất.

Xem lời giải

Câu 8: Trang 34 sách VNEN 9 tập 1

Cho biểu thức: P = $\left ( \frac{\sqrt{x} - \sqrt{y}}{1 + \sqrt{xy}} + \frac{\sqrt{x} + \sqrt{y}}{1 - \sqrt{xy}} \right )$ : $\left (\frac{x + y + 2xy}{1 - xy} + 1 \right )$

a) Rút gọn P

b) Tính giá trị của P tại x = $\frac{2}{2 + \sqrt{3}}$.

c) Chứng minh: P $\leq $ 1.

Xem lời giải

Câu 10: Trang 34 sách VNEN 9 tập 1

Cho biểu thức: P = $\frac{3(x + \sqrt{x} - 3)}{x + \sqrt{x} - 2}$ + $\frac{\sqrt{x} + 3}{\sqrt{x} + 2}$ - $\frac{\sqrt{x} - 2}{\sqrt{x} - 1}$  

a) Rút gọn biểu thức P

b) Tìm x để P < $\frac{15}{4}$.

Xem lời giải

D.E. HOẠT ĐỘNG VẬN DỤNG và TÌM TÒI, MỞ RỘNG

Câu 1: Trang 34 sách VNEN 9 tập 1

Tìm giá trị lớn nhất của A = $\sqrt{x - 2}$.$\sqrt{4 - x}$

Xem lời giải

Câu 2: Trang 34 sách VNEN 9 tập 1

Tìm các số hữu tỉ a sao cho biểu thức B = $\frac{\sqrt{a} + 1}{\sqrt{a} - 1}$ có giá trị là số nguyên.

Xem lời giải

Xem thêm các bài Toán VNEN 9 tập 1, hay khác:

Để học tốt Toán VNEN 9 tập 1, loạt bài giải bài tập Toán VNEN 9 tập 1 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

PHẦN ĐẠI SỐ

Chương 1: Căn bậc hai. Căn bậc ba

Chương 2. Hàm số bậc nhất

PHẦN HÌNH HỌC

Chương 1. Hệ thức lượng trong tam giác vuông

Chương 2. Đường tròn

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.