Câu 7: Trang 23 sách VNEN 9 tập 1
Thực hiện phép tính:
a) $\frac{1}{\sqrt{3} - 1}$ - $\frac{1}{\sqrt{3} + 1}$ ; b) $\frac{\sqrt{2} - 1}{\sqrt{2} + 2}$ - $\frac{1}{1 + \sqrt{2}}$ + $\frac{\sqrt{2} + 1}{\sqrt{2}}$ ;
c) $\sqrt{x}$ - 2 + $\frac{10 - x}{\sqrt{x} + 2}$ với x $\geq $ 0 ; d) $\frac{x\sqrt{x} - y\sqrt{y}}{\sqrt{x} - \sqrt{y}}$ với x $\geq $ 0, y $\geq $ 0 và x $\neq $ y.
Bài Làm:
Giải câu a)
$\frac{1}{\sqrt{3} - 1}$ - $\frac{1}{\sqrt{3} + 1}$=$\frac{\sqrt{3} + 1}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$ - $\frac{\sqrt{3} - 1}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$ = $\frac{\sqrt{3} + 1 - \sqrt{3} + 1}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$ = $\frac{2}{3 - 1}$ = 1.
Giải câu b)
$\frac{\sqrt{2} - 1}{\sqrt{2} + 2}$ - $\frac{1}{1 + \sqrt{2}}$ + $\frac{\sqrt{2} + 1}{\sqrt{2}}$ = $\frac{\sqrt{2} - 1}{\sqrt{2}(1 + \sqrt{2})}$ - $\frac{1}{1 + \sqrt{2}}$ + $\frac{\sqrt{2} + 1}{\sqrt{2}}$ = $\frac{\sqrt{2} - 1}{\sqrt{2}(1 + \sqrt{2})}$ - $\frac{\sqrt{2}}{\sqrt{2}(1 + \sqrt{2})}$ + $\frac{(\sqrt{2} + 1)(1 + \sqrt{2})}{\sqrt{2}(1 + \sqrt{2})}$ = $\frac{\sqrt{2} - 1 - \sqrt{2} + 2 + 1 + 2\sqrt{2} }{\sqrt{2}(1 + \sqrt{2})}$ = $\frac{2 + 2\sqrt{2}}{\sqrt{2}(1 + \sqrt{2})}$ = $\sqrt{2}$.
Giải câu c)
$\sqrt{x}$ - 2 + $\frac{10 - x}{\sqrt{x} + 2}$ = $\frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{\sqrt{x} + 2}$ + $\frac{10 - x}{\sqrt{x} + 2}$ = $\frac{x - 4 + 10 - x}{\sqrt{x} + 2}$ = $\frac{6}{\sqrt{x} + 2}$
Giải câu d)
$\frac{x\sqrt{x} - y\sqrt{y}}{\sqrt{x} - \sqrt{y}}$ = $\frac{(\sqrt{x})^{3} - (\sqrt{y})^{3}}{\sqrt{x} - \sqrt{y}}$ = $\frac{(\sqrt{x} - \sqrt{y})((\sqrt{x})^{2} + \sqrt{x}\sqrt{y} + (\sqrt{y})^{2})}{\sqrt{x} - \sqrt{y}}$ = $(\sqrt{x})^{2}$ + $\sqrt{x}$$\sqrt{y}$ + $(\sqrt{y})^{2}$.