Câu 2: Trang 143-sgk giải tích 12
Thế nào là phần thực phần ảo, mô đun của một số phức? Viết công thức tính mô đun của số phức theo phần thực phần ảo của nó?
Bài Làm:
- Mỗi biểu thức dạng $a+bi$, ( $a,b \in R,i^{2}=-1$ ) là một số phức.
- $a$ gọi là phần thực của số phức $a+bi$.
- $b$ gọi là phần ảo của số phức $a+bi$.
- Ký hiệu tập số phức: $C$
- Môđun của số phức $z=a+bi$ được biểu diễn bởi điểm M(a;b) là độ dài vectơ $\overrightarrow{OM}$.
- Ký hiệu: $\left | z \right |$
$\left | z \right |=\left | a+bi \right |=\sqrt{a^{2}+b^{2}}$ |