Giải bài 2: Cộng, trừ và nhân số phức

Bài học tiếp theo với nội dung: Cộng, trừ và nhân số phức. Một kiến thức mới nhưng không khó, đòi hỏi các bạn học sinh cần nắm được lý thuyết để vận dụng giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 12, ConKec sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn

A. Tổng hợp kiến thức

I. Phép cộng, trừ số phức

Tổng quát

$(a+bi)+(c+di)=(a+c)+(b+d)i$

$(a+bi)-(c+di)=(a-c)+(b-d)i$

Ví dụ

Tính:  $(2+3i)-(5i)=(2-0)+(3-5)i=2-2i$

II. Phép nhân

Tổng quát

$(a+bi)(c+di)=(ac-bd)+(ad+bc)i$

Ví dụ

Tính: $(2+i)(1+3i)=(2.1-1.3)+(2.3+1.1)i=-1+7i$

Chú ý:

  • Phép cộng, trừ số phức được thực hiện theo quy tắc cộng, trừ đa thức.
  • Phép cộng và nhân số phức có tất cả các tính chất của phép cộng và phép nhân các số thực.

B. Bài tập & Lời giải

Câu 1:Trang 135-sgk giải tích 12

Thực hiện các phép tính sau:

a) $(3 - 5i) + (2 + 4i)$                    

b) $(-2 - 3i) + (-1 - 7i)$

c) $(4 + 3i) - (5 - 7i)$                

d) $(2 - 3i) - ( 5 - 41)$

Xem lời giải

Câu 2 Trang 135-sgk giải tích 12

Tính $\alpha +\beta ,\alpha -\beta $ với:

a) $\alpha =3,\beta =2i$

b) $\alpha =1-2i,\beta =6i$

c) $\alpha =5i,\beta =-7i$

d) $\alpha =15,\beta =4-2i$

Xem lời giải

Câu 3 (Trang 136-sgk giải tích 12)

Thực hiện các phép tính sau:

a) $(3-2i)(2-3i)$

b) $(-1+i)(3+7i)$

c) $5(4+3i)$

d) $(-2-5i).4i$

Xem lời giải

Câu 4 (Trang 136-sgk giải tích 12)

Tính $i^{3} ; i^{4} ; i^{5}$.

Nêu cách tính $i^{n} với $n$ là số tự nhiên tùy ý.

Xem lời giải

Câu 5 (Trang 136-sgk giải tích 12)

Tính:

a) $(2+3i)^{2}$

b) $(2+3i)^{3}$

Xem lời giải

Lớp 12 | Để học tốt Lớp 12 | Giải bài tập Lớp 12

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 12, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 12 giúp bạn học tốt hơn.