Cách giải bài dạng: Xét vị trí tương đối giữa parabol y = ax^2 và đường thẳng y = kx + b Toán lớp 9

ConKec xin gửi tới các bạn bài học Cách giải bài toán dạng: Xét vị trí tương đối giữa parabol y = ax^2 và đường thẳng y = kx + b Toán lớp 9. Bài học cung cấp cho các bạn phương pháp giải dạng toán và các bài tập vận dụng. Hi vọng nội dung bài học sẽ giúp các bạn hoàn thiện và nâng cao kiến thức để hoàn thành mục tiêu của mình.

A. PHƯƠNG PHÁP GIẢI

Để xét vị trí tương đối giữa parabol (P): y = ax$^{2}$ và đường thẳng (d): y = kx + b, ta lập phương trình  ax$^{2}$ = kx + b hay ax$^{2}$ - kx - b = 0 (*). Số nghiệm của phương trình này chính là số điểm chung của hai đồ thị.

  • (d) cắt (P) tại hai điểm phân biệt ((d) và (P) có hai điểm chung phân biệt) ⇒ phương trình (*) có hai nghiệm phân biệt (Δ > 0 hoặc Δ' > 0).
  • (d) tiếp xúc với (P) ((d) và (P) có một điểm chung) phương trình (*) có nghiệm kép (Δ = 0 hoặc Δ' = 0).
  • (d) và (P) không cắt nhau phương trình (*) vô nghiệm (Δ < 0 hoặc Δ' < 0).

Ví dụ: Cho parabol (P): y = ax$^{2}$ và đường thẳng d: y = kx + 3

a, Xác định các hệ số a và k, biết parabol và đường thẳng có một điểm chung là A(3; 18)

b, Từ kết quả của câu a, hãy tìm giao điểm thứ hai (nếu có) của (P) và (d).

Hướng dẫn:

a, Từ giả thiết suy ra điểm A(3; 18) thuộc (P) và (d), do đó ta có:

18 = 9a và 18 = 3k + 3

=> a = 2 và k = 5

Vậy a = 2 và k = 5.

b, Ta có hoành độ giao điểm của (P) và (d) là nghiệm của phương trình:

2x$^{2}$ = 5x + 3 <=> 2x$^{2}$ - 5x - 3 = 0

$\Delta =5^{2}-4.2.(-3)=49$ => $\sqrt{\Delta }=\sqrt{49}=7$

x1 = $\frac{5+7}{4}$ = 3; x2 = $\frac{5-7}{4}$ = -$\frac{1}{2}$

x1 chính là hoành độ điểm A, với x2 = -$\frac{1}{2}$ ta có y2 = 2.(-$\frac{1}{2}$)$^{2}$ = $\frac{1}{2}$

Vậy giao điểm thứ hai của (P) và (d) là B(-$\frac{1}{2}$; $\frac{1}{2}$)

B. Bài tập & Lời giải

1. a, Vẽ đồ thị hàm số y = $\frac{1}{2}x^{2}$

b, Với giá trị nào của m thì đường thẳng y = x + m cắt đồ thị hàm số y = $\frac{1}{2}x^{2}$ tại hai điểm phân biệt A, B. Tính tọa độ giao điểm này khi m = $\frac{3}{2}$

Xem lời giải

2. Cho parabol (P): y = x$^{2}$ và đường thẳng d có phương trình y = mx + 1.

a, Chứng minh rằng với mọi m, đường thẳng d luôn cắt (P) tại hai điểm phân biệt A, B

b, Tìm giá trị của m để tam giác OAB có diện tích bằng 3.

3. Cho đường thẳng thẳng d có phương trình: y = -$\frac{2(m-1)}{m-2}$x + 2 = 0, m $\neq 2$

a, Tìm m để đường thẳng d cắt parabol y = x$^{2}$ tại hai điểm phân biệt A và B.

b, Tìm tọa độ trung điểm của AB theo m.

Xem lời giải

4. Cho parabol (P): y = m$x^{2}$ và đường thẳng (d): y = nx + 4. Xác định m, n để (P) và (d) tiếp xúc nhau tại điểm có hoành độ x = -2.

5. Cho parabol y = $\frac{1}{2}x^{2}$ và đường thẳng y = mx + n

Xác định các hệ số m và n để đường thẳng đi qua điểm A(-1; 0) và tiếp xúc với parabol. Tìm tọa độ của tiếp điểm.

Xem lời giải

Xem thêm các bài Chuyên đề toán 9, hay khác:

Để học tốt Chuyên đề toán 9, loạt bài giải bài tập Chuyên đề toán 9 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.