Bài tập 9. Hai lực $\overrightarrow{F_{1}}, \overrightarrow{F_{2}}$ cho trước cùng tác dụng lên một vật tại điểm $O$ và tạo với nhau một góc $\left(\overrightarrow{F_{1}}, \overrightarrow{F_{2}}\right)=\alpha$ làm cho vật di chuyển theo hướng từ $O$ đến $C$ (Hình 75). Lập công thức tính cường độ của hợp lực $\vec{F}$ làm cho vật di chuyển theo hướng từ $O$ đến $C$ (giả sử chỉ có đúng hai lực $\vec{F}_{1}, \overrightarrow{F_{2}}$ làm cho vật di chuyển).
Bài Làm:
Áp dụng quy tắc hình bình hành: $\vec{F}=\vec{F}_{1}+\vec{F}_{2}$
Áp dụng định lý cosin: $|\vec{F}|^2=|\vec{F}_{1}|^2+|\vec{F}_{2}|^2-2 \cdot |\vec{F}_{1}| \cdot |\vec{F}_{2}| \cdot cos (180^{\circ}-\alpha)$
$=|\vec{F}_{1}|^2+|\vec{F}_{2}|^2+2 \cdot |\vec{F}_{1}| \cdot |\vec{F}_{2}| \cdot cos \alpha$
Cường độ của hợp lực $\vec{F}$ là: $\sqrt{{F}_{1}^2+{F}_{2}^2+2 \cdot {F}_{1} \cdot {F}_{2}\cdot cos \alpha}$