Bài tập 7. Chứng minh:
a. Nếu $A B C D$ là hình bình hành thì $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C E}=\overrightarrow{A E}$ vơi $E$ là điểm bất kì;
b. Nếu $I$ là trung điểm của đoạn thẳng $A B$ thì $\overrightarrow{M A}+\overrightarrow{M B}+2 \overrightarrow{I N}=2 \overrightarrow{M N}$ với $M, N$ là hai điểm bất kì;
c. Nếu $G$ là trọng tâm của tam giác $A B C$ thì $\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}-3 \overrightarrow{M N}=3 \overrightarrow{N G}$ với $M, N$ là hai điểm bất kì.
Bài Làm:
a. Áp dụng quy tắc hình bình hành: $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C E}=overrightarrow{AC}+\overrightarrow{C E}=\overrightarrow{A E}$ (đpcm)
b. $\overrightarrow{M A}+\overrightarrow{M B}+2 \overrightarrow{I N}=\overrightarrow{M A}+\overrightarrow{I N}+\overrightarrow{M B}+\overrightarrow{I N}$
$=\overrightarrow{M A}+\overrightarrow{IM}+\overrightarrow{MN}+\overrightarrow{M B}+\overrightarrow{IM}+\overrightarrow{MN}$
$=2 \overrightarrow{M N}+\overrightarrow{IA}+\overrightarrow{IB}$
$=2 \overrightarrow{M N}$ (đpcm)
c. $\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}-3 \overrightarrow{M N}$
$=3\overrightarrow{MG}+\overrightarrow{G A}+\overrightarrow{GB}+\overrightarrow{G C}-3 \overrightarrow{MG}+\overrightarrow{N G}$
$=3 \overrightarrow{N G}$ (do $G$ là trọng tâm của tam giác $A B C$) (đpcm)