Giải câu 4 bài tích của một số với một vectơ

Bài tập 4. Cho tam giác $A B C$. Các điểm $D, E$ thuộc cạnh $B C$ thoả mãn $B D=D E=E C$ (Hình 62). Giả sử $\overrightarrow{A B}=\vec{a}$, $\overrightarrow{A C}=\vec{b}$. Biểu diễn các vectơ $\overrightarrow{B C}, \overrightarrow{B D}, \overrightarrow{B E}, \overrightarrow{A D}, \overrightarrow{A E}$ theo $\vec{a}, \vec{b}$.

Giải bài 5 Tích của một số với một vectơ

Bài Làm:

  • $\overrightarrow{B C}=\overrightarrow{BA}+\overrightarrow{AC}=-\vec{a}+ \vec{b}$
  • $\overrightarrow{B D}=\frac{1}{3}\overrightarrow{B C}=\frac{1}{3}(-\vec{a}+ \vec{b})$
  • $ \overrightarrow{B E}=\frac{2}{3}\overrightarrow{B C}=\frac{2}{3}(-\vec{a}+ \vec{b})$
  • $\overrightarrow{A D}=\overrightarrow{AB}+\overrightarrow{BD}=\vec{a}+\frac{1}{3}(-\vec{a}+ \vec{b})=\frac{2}{3}\vec{a}+ \frac{1}{3}\vec{b}$
  • $\overrightarrow{A E}=\overrightarrow{AC}+\overrightarrow{CE}=\overrightarrow{AC}-\overrightarrow{BD}=\vec{b}-\frac{1}{3}(-\vec{a}+ \vec{b})=\frac{1}{3}\vec{a}+\frac{2}{3}\vec{b}$

Xem thêm Bài tập & Lời giải

Trong: Giải bài 5 Tích của một số với một vectơ

Bài tập 1. Cho hình thang $M N P Q, M N / / P Q, M N=2 P Q$. Phát biểu nào sau đây là đúng?

A. $\overrightarrow{M N}=2 \overrightarrow{P Q}$.

B. $\overrightarrow{M Q}=2 \overrightarrow{N P}$.

C. $\overrightarrow{M N}=-2 \overrightarrow{P Q}$.

D. $\overrightarrow{M Q}=-2 \overrightarrow{N P}$.

Xem lời giải

Bài tập 2. Cho đoạn thẳng $A B=6 \mathrm{~cm}$.

a. Xác định điểm $C$ thoả mãn $\overrightarrow{A C}=\frac{1}{2} \overrightarrow{A B}$.

b. Xác định điểm $D$ thoả mãn $\overrightarrow{A D}=-\frac{1}{2} \overrightarrow{A B}$.

Xem lời giải

Bài tập 3. Cho tam giác $A B C$ có $M, N, P$ lần lượt là trung điểm của $B C, C A, A B$. Chứng minh:

a. $\overrightarrow{A P}+\frac{1}{2} \overrightarrow{B C}=\overrightarrow{A N}$;

b. $\overrightarrow{B C}+2 \overrightarrow{M P}=\overrightarrow{B A}$.

Xem lời giải

Bài tập 5. Cho tứ giác $A B C D$ có $M, N$ lần lượt là trung điểm của hai cạnh $A B$ và $C D$. Gọi $G$ là trung điểm của đoạn thẳng $M N, E$ là trọng tâm tam giác $B C D$. Chứng minh:

a. $\overrightarrow{E A}+\overrightarrow{E B}+\overrightarrow{E C}+\overrightarrow{E D}=4 \overrightarrow{E G}$;

b. $\overrightarrow{E A}=4 \overrightarrow{E G}$;

c. Điểm $G$ thuộc đoạn thẳng $A E$ và $\overrightarrow{A G}=\frac{3}{4} \overrightarrow{A E}$.

Xem lời giải

Bài tập 6. Cho hình bình hành $A B C D$. Đặt $\overrightarrow{A B}=\vec{a}, \overrightarrow{A D}=\vec{b}$. Gọi $G$ là trọng tâm của tam giác $A B C$. Biểu thị các vectơ $\overrightarrow{A G}, \overrightarrow{C G}$ theo hai vectơ $\vec{a}, \vec{b}$.

Xem lời giải

Bài tập 7. Cho tam giác $A B C$. Các điểm $D, E, H$ thoả mãn

$\overrightarrow{D B}=\frac{1}{3} \overrightarrow{B C}, \overrightarrow{A E}=\frac{1}{3} \overrightarrow{A C}, \overrightarrow{A H}=\frac{2}{3} \overrightarrow{A B}.$

a. Biểu thị mỗi vectơ $\overrightarrow{A D}, \overrightarrow{D H}, \overrightarrow{H E}$ theo hai vectơ $\overrightarrow{A B}, \overrightarrow{A C}$.

b. Chứng minh $D, E, H$ thẳng hàng.

Xem lời giải

Xem thêm các bài Giải Toán 10 tập 1 cánh diều, hay khác:

Xem thêm các bài Giải Toán 10 tập 1 cánh diều được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập