Giải bài 2: Giá trị lượng giác của một cung – sgk Đại số 10 trang 141

Thế nào là giá trị lượng giác? Để giải đáp câu hỏi này, ConKec xin chia sẻ với các bạn bài 2: Giá trị lượng giác của một cung. Với lý thuyết và các bài tập có lời giải chi tiết, hi vọng rằng đây sẽ là tài liệu hữu ích giúp các bạn học tập tốt hơn.

Nội dung bài viết gồm 2 phần:

  • Ôn tập lý thuyết
  • Hướng dẫn giải bài tập sgk

A. Tóm tắt lý thuyết

I. Giá trị lượng giác

1. Định nghĩa

Các giá trị \(sin\,\alpha ; cos\,\alpha; tan\,\alpha; cot\,\alpha\)được gọi là các giá trị lượng giác của cung \(\alpha\)

Ta cũng gọi trục tung là trục sin, trục hoành là trục cos.

CHÚ Ý:

  • Các định nghĩa trên cũng áp dụng cho các góc lượng giác
  • Nếu \(0^o \leq \alpha \leq 180^o\)thì các giá trị lượng giác của góc \(\alpha\)chính là các giá trị lượng giác của góc đó đã nêu trong SGK Hình học 10.

2. Hệ quả.

Bảng xác định dấu của các giá trị lượng giác

Giá trị lượng giác

Góc phần tư

I

II

III

IV

\(cos\,\alpha\)

+

-

-

+

\(sin\,\alpha\)

+

+

-

-

\(tan\,\alpha\)

+

-

+

-

\(cot\,\alpha\)

+

-

+

-

3. Giá trị lượng giác của các cung đặc biệt

\(\alpha\)

\(0\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(sin\,\alpha\)

\(0\)

\(\frac{1}{2}\)

\(\frac{\sqrt 2}{2}\)

\(\frac{\sqrt 3}{2}\)

\(1\)

\(cos\,\alpha\)

\(1\)

\(\frac{\sqrt 3}{2}\)

\(\frac{\sqrt 2}{2}\)

\(\frac{1}{2}\)

\(0\)

\(tan\,\alpha\)

\(0\)

\(\frac{1}{\sqrt 3}\)

\(1\)

\(\sqrt 3\)

Không xác định

\(cot\,\alpha\)

Không xác định

\(\sqrt 3\)

\(1\)

\(\frac{1}{\sqrt 3}\)

\(0\)

II. Ý nghĩa hình học của Tang và Côtang

1. Ý nghĩa hình học của \(tan\,\alpha \)

\(tan\,\alpha \)được biểu diễn bởi độ dài đại số của vectơ \(\overrightarrow{AT}\)trên trục \(t’At\).

Trục \(t’At\)được gọi là trục tang.(hình 50 sgk trang 144)

2. Ý nghĩa hình học của \(cot\,\alpha \)

\(cot\,\alpha \)được biểu diễn bởi độ dài đại số của vectơ \(\overrightarrow{BS}\)trên trục \(s’Bs\).

Trục \(s’Bs\)được gọi là trục côtang.(hình 51 sgk trang 144)

III. Quan hệ giữa các giá trị lượng giác

1. Công thức lượng giác cơ bản

\(sin^2\alpha +cos^2\alpha =1\)

 

\(1+tan^2\alpha =\frac{1}{cos^2\alpha }\)

\(\alpha \neq \frac{\pi }{2}+k \pi , k \in \mathbb{Z}\)

\(1+cot^2\alpha =\frac{1}{sin^2\alpha }\)

\(\alpha \neq k \pi , k \in \mathbb{Z}\)

\(tan\,\alpha .cot \,\alpha =1\)

\(\alpha \neq \frac{k \pi }{2} , k \in \mathbb{Z}\)

2. Giá trị lượng giác của các cung có liên quan đặc biệt

a. Cung đối nhau: \(\alpha \)và \(-\alpha \)

\(cos\,(-\alpha)= cos\,\alpha\)

\(sin\,(-\alpha)= -sin\,\alpha\)

\(tan\,(-\alpha)= -tan\,\alpha\)

\(cot\,(-\alpha)= -cot\,\alpha\)

b. Cung bù nhau : \(\alpha \)và \(\pi -\alpha \)

\(sin\,(\pi -\alpha)= sin\,\alpha\)

\(cos\,(\pi -\alpha)= -cos\,\alpha\)

\(tan\,(\pi -\alpha)= -tan\,\alpha\)

\(cot\,(\pi -\alpha)= -cot\,\alpha\)

c. Cung hơn kém \(\pi \):\(\alpha \)và \(\alpha +\pi \)

\(sin\,(\alpha +\pi )= -sin\,\alpha\)

\(cos\,(\alpha +\pi )= -cos\,\alpha\)

\(tan\,(\alpha +\pi )= tan\,\alpha\)

\(cot\,(\alpha +\pi )= cot\,\alpha\)

d. Cung phụ nhau \(\alpha \)và \(\left ( \frac{\pi }{2}-\alpha  \right )\)

\(sin\,\left ( \frac{\pi }{2}-\alpha  \right )=cos\,\alpha \)

\(cos\,\left ( \frac{\pi }{2}-\alpha  \right )=sin\,\alpha \)

\(tan\,\left ( \frac{\pi }{2}-\alpha  \right )=cot\,\alpha \)

\(cot\,\left ( \frac{\pi }{2}-\alpha  \right )=tan\,\alpha \)

B. Bài tập & Lời giải

Câu 1: trang 148 sgk Đại số 10

Có cung \(α\) nào mà \(\sinα\) nhận các giá trị tương ứng sau đây không?  

a) \(-0,7\)b) \( \frac{4}{3}\) 
c) \(-\sqrt2\)d)\( \frac{\sqrt{5}}{2}\) 

Xem lời giải

Câu 2: trang 148 sgk Đại số 10

Các đẳng thức sau có thể đồng thời xảy ra không?

a) \(\sin α =  \frac{\sqrt{2}}{3}\) và \(\cos α =  \frac{\sqrt{3}}{3}\);

b) \(\sinα = -\frac{4}{5}\) và \(\cosα =  -\frac{3}{5}\)

c) \(\sinα = 0,7\) và \(\cosα = 0,3\)

Xem lời giải

Câu 3: trang 148 sgk Đại số 10

Cho \(0 < α <  \frac{\pi }{2}\). Xác định dấu của các giá trị lượng giác

a) \(\sin(α - π)\)b) \(\cos\left( \frac{3\pi }{2}- α\right)\)
c) \(\tan(α + π)\)d) \(\cot\left(α +  \frac{\pi }{2}\right)\)

Xem lời giải

Câu 4: trang 148 sgk Đại số 10

Tính các giá trị lượng giác của góc \(α\), nếu:

a) \(\cosα = \frac{4}{13}\) và \(0 < α < \frac{\pi }{2}\);            

b) \(\sinα = -0,7\) và \(π < α <  \frac{3\pi }{2}\);

c) \(\tan α =  -\frac{15}{7}\) và \( \frac{\pi }{2} < α < π\);          

d) \(\cotα = -3\) và \( \frac{3\pi }{2} < α < 2π\).

Xem lời giải

Câu 5: trang 148 sgk Đại số 10

Tính \(α\), biết:

a) \(\cosα = 1\)b) \(\cosα = -1\)
c) \(\cosα = 0\)d) \(\sinα = 1\)
e) \(\sinα = -1\)f) \(\sinα = 0\)

Xem lời giải

Xem thêm các bài Đại số lớp 10, hay khác:

Để học tốt Đại số lớp 10, loạt bài giải bài tập Đại số lớp 10 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập