Câu 2:Trang 126-sgk giải tích 12
a) Phát biểu định nghĩa tích phân của hàm số f(x) trên một đoạn.
b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.
Bài Làm:
a)
- Cho f(x) là hàm số liên tục trên đoạn [a;b].
- F(x) là một nguyên hàm của f(x) trên đoạn [a;b].
=> Hiệu số F(b) - F(a) gọi là tích phân từ a -> b .
Ký hiệu: $\int_{a}^{b}f(x)dx$ với a là cận dưới, b là cận trên, f(x)dx là biểu thức dưới dấu tích phân, f(x) là hàm số dưới dấu tích phân.
Công thức tổng quát
$\int_{a}^{b}f(x)dx=F(b)-F(a)$ |
b)
Tính chất 1
$\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx$ |
Tính chất 2
$\int_{a}^{b}(f(x)\pm g(x))dx=\int_{a}^{b}f(x)dx\pm \int_{a}^{b}g(x)dx$ |
Tính chất 3
$\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx$ |
Ví dụ minh họa:
Tính tích phân sau: $\int_{0}^{1}x(1-x)^{5}dx$
Lời giải:
Đặt $u=1-x => du=-dx$
=> $x=1-u$
$x=0=> u=1$
$x=1=>u=0$
=> $\int_{0}^{1}x(1-x)^{5}dx=-\int_{0}^{1}(1-u)u^{5}du=\frac{1}{42}$