Dạng 2: Tìm GTLN, GTNN của hàm số bằng cách đặt ẩn phụ

Dạng 2: Tìm GTLN, GTNN của hàm số bằng cách đặt ẩn phụ

Bài Làm:

I.Phương pháp giải

Đặt $t=k(x)$.

Xác định điều kiện của t.

Đưa hàm số f(x) về hàm số g(t).

Tìm GTLN; GTNN của hàm g(t) rồi kết luận.

II.Bài tập vận dụng

Bài tập 1: Tìm GTLN và GTNN của hàm số $f(x)=\cos 2x+2\sin x -3$ trên $[\frac{-\pi}{6}; \frac{5\pi}{6}]$.

Bài giải:

Đặt $t=\sin x$. Vì $x\in [\frac{-\pi}{6}; \frac{5\pi}{6}]$ nên $t\in [\frac{-1}{2}; 1]=T$.

Khi đó $f(x)= -2t^2+2t-2=g(t).$

Ta có $g'(t)=-4t+2$.

$g'(t)=0 \Leftrightarrow t=\frac{1}{2}$.

Ta có: $g(\frac{-1}{2})=\frac{-7}{2}; g(\frac{1}{2})=\frac{-3}{2}; g(1)=-2$.

Vậy:

$\underset{x}{max}$ $f(x)=\underset{t}{max}g(t)=g(\frac{1}{2})=\frac{-3}{2}$

$\underset{x}{min}$ $f(x)=\underset{t}{min}g(t)=g(\frac{-1}{2})=\frac{-7}{2}$

Bài tập 2: Tìm GTLN và GTNN của hàm số $f(x)=\sqrt{5-x}+\sqrt{x-1}-\sqrt{(x-1)(5-x)}+5$.

Bài giải:

Tập xác định D=[1; 5], X = D.

$Đặt t=\sqrt{5-x}+\sqrt{x-1}$

Khi đó: $t^{'}=\frac{-1}{2\sqrt{5-x}}+\frac{1}{2\sqrt{x-1}}=\frac{\sqrt{5-x}-\sqrt{x-1}}{2\sqrt{x-1}\sqrt{5-x}}$

$t^{'}=0\Leftrightarrow x=3$

$t(1)=2, t(3)=2\sqrt{2}, t(5)=2$

$\underset{[1; 5]}{max}t=2\sqrt{2} \underset{[1; 5]}{min}t=2.$

$\Rightarrow t\in [2; 2\sqrt{2}]$

$t^{2}=4+2\sqrt{(x-1)(5-x)}\Rightarrow \sqrt{(x-1)(5-x)}=\frac{t^{2}-4}{2}$

Vậy ta được:

$\Rightarrow g(t)\frac{-1}{2}t^{2}+t+7$

$g^{'}(t)=-t +1=0\Leftrightarrow t=1\in [2; 2\sqrt{2}]$

$g(2)=7, g(1)=\frac{15}{2}, g(2\sqrt{2})=3+2\sqrt{2}$

$\underset{x}{max}$ $f(x)=\underset{t}{max}g(t)=g(1)=\frac{-3}{2}$

$\underset{x}{min}$ $f(x)=\underset{t}{min}g(t)=g(2\sqrt{2})=3+\sqrt{2}$

Xem thêm Bài tập & Lời giải

Trong: Giải bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bài 1: Trang 23, 24 - sgk giải tích 12

Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số

a) $y=x^{3}-3x^{2}-9x+35$ trên các đoạn $[-4;4]$ và $[0;5]$;

b) $y=x^{4}-3x^{2}+2$ trên các đoạn $[0;3]$ và $[2;5]$;

c) $y=\frac{2-x}{1-x}$ trên các đoạn $[2;4]$ và $[-3;-2]$;

d) $y=\sqrt{5-4x}$ trên đoạn $[-1;1]$.

Xem lời giải

Bài 2: Trang 24  - sgk giải tích 12

Trong các hình chữ nhật có cùng chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Xem lời giải

Bài 3: Trang 24 - sgk giải tích 12

Trong tất cả các hình chữ nhật cùng có diện tích $48 m^{2}$, hãy xác định hình chữ nhật có chu vi nhỏ nhất.

Xem lời giải

Bài 4: Trang 24 - sgk giải tích 12

Tính giá trị lớn nhất của các hàm số sau:

a) $y=\frac{4}{1+x^{2}}$;

b) $y=4x^{3}-3x^{4}$.

Xem lời giải

Bài 5: Trang 24 - sgk giải tích 12

Tính giá trị nhỏ nhất của các hàm số sau:

a) $y=|x|$;

b) $y=x+\frac{4}{x}$. (x>0)

Xem lời giải

Phần tham khảo mở rộng

Dạng 1: Tìm giá trị của tham số sao cho hàm số thoả mãn một giá trị nào đó liên quan đến GTLN và GTNN trên đoạn [a; b].

Xem lời giải

Lớp 12 | Để học tốt Lớp 12 | Giải bài tập Lớp 12

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 12, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 12 giúp bạn học tốt hơn.