Lý thuyết trọng tâm toán 7 chân trời bài 1: Tỉ lệ thức - Dãy tỉ số bằng nhau

Tổng hợp kiến thức trọng tâm toán 7 chân trời sáng tạo bài 1: Tỉ lệ thức - Dãy tỉ số bằng nhau. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo

1.TỈ LỆ THỨC 

HĐKP1:

$\frac{227,6}{324}=\frac{569}{810}$

$\frac{170,7}{243}=\frac{569}{810}$

=> $\frac{227,6}{324}=\frac{170,7}{243}$

Vậy tỉ số giữa chiều rộng và chiều dài của mỗi màn hình bằng nhau.

=> Kết luận:

Tỉ lệ thức là đẳng thức của hai tỉ số: $\frac{a}{b}=\frac{c}{d}$

Tỉ lệ thức $\frac{a}{b}=\frac{c}{d}$ còn được viết là a: b = c: d

Thực hành 1: 

a. Có. 

Vì $\frac{6}{5}:2=\frac{6}{10}=\frac{3}{5}$;

$\frac{12}{5}:\frac{1}{4}=\frac{12}{20}=\frac{3}{5}$

=> $\frac{6}{5}:2=\frac{12}{5}:4$

b. Hai tỉ lệ thức có thể lập được từ bốn số 9; 2; 3; 6 là: $\frac{2}{3}=\frac{6}{9};\frac{2}{6}=\frac{3}{9}$

Vận dụng 1:

Có:

+ Tỉ số giữa chiều rộng và chiều dài của màn hình loại 1 là: $\frac{227,6}{324}=\frac{569}{810}$

+ Tỉ số giữa chiều rộng và chiều dài của màn hình loại 2 là: $\frac{170,7}{243}=\frac{569}{810}$

=> $\frac{227,6}{324}=\frac{170,7}{243}$

Tính chất của tỉ lệ thức

Tính chất 1:

HĐKP2:

a. Ta nhân cả 2 vế với 64.12 thì được 48.12 = 9.64

b. Ta nhân cả 2 vế với bd thì được: ad = bc

=> Kết luận:

Nếu $\frac{a}{b}=\frac{c}{d}$ thì ad = bc

Tính chất 2:

HĐKP3:

Chia cả hai vế cho 64 . 12 thì có kết quả $\frac{3}{4}$

Chia cả 2 vế cho bd ta có: $\frac{a}{b}=\frac{c}{d}$

=> Kết luận:

Nếu thì ad = bc và a, b, c, d ≠ 0 thì ta có tỉ lệ thức:

$\frac{a}{b}=\frac{c}{d};\frac{a}{c}=\frac{b}{d};\frac{d}{c}=\frac{b}{a};\frac{d}{b}=\frac{c}{a}$

Thực hành 2. 

$\frac{5}{3}=\frac{x}{9}$

=> 5.9 = 3.x

<=> x =  5 . 9: 3

<=> x = 15

Vận dụng 2.

x = 2y => $\frac{x}{2}=\frac{y}{1}$

2. DÃY TỈ SỐ BẰNG NHAU

HĐKP4:

Ta có: $\frac{4}{8}=\frac{3}{6}=\frac{5}{10}$

=> Tỉ số giữa số hình dán được thưởng và số bài toán làm được của mỗi bạn bằng nhau.

=> Kết luận:

- Ta gọi dãy các đẳng thức: $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$ là một dãy các tỉ số bằng nhau.

-  Khi có dãy tỉ số bằng nhau $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$ , ta nói các số a, c, e tỉ lệ với các số b, d, f và có thể ghi là a: c: e = b: d: f

Thực hành 3:

$\frac{a}{2}=\frac{b}{4}=\frac{c}{6}$

Vận dụng 3.

Gọi m, n, p, q là số quyển vở được chia của bốn bạn Mai, Ngọc, Phú, Quang (quyển, m, n, p, q N* )

Vì số quyển vở được chia lần lượt tỉ lệ với số điểm 10 => m: n: p : q = 12: 13: 14: 15

Hay $\frac{m}{12}=\frac{n}{13}=\frac{p}{14}=\frac{q}{15}$

=> Dãy tỉ số bằng nhau tương ứng.

Tính chất 1:

HĐKP5:

Có: $\frac{3+9}{7+21}=\frac{12}{28}=\frac{3}{7}$

So sánh: $\frac{3}{7}=\frac{9}{21}=\frac{3+9}{7+21}$

$\frac{3-9}{7-21}=\frac{-6}{-14}=\frac{9}{21}$

So sánh:  37=921 = 3-97-21.

=> Kết luận:

$\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}$ (các mẫu số phải khác 0).

Thực hành 4:

a) Ta có:

$\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{30}{5}=6$

x = 6.2 = 12 và y = 6.3 = 18 

b) Ta có:

$\frac{x}{5}=\frac{y}{-2}=\frac{x-y}{5-(-2)}=\frac{-21}{7}=-3$

x = -3.5 = -15 và y = (-3).(-2) = 6 

Vận dụng 4:

a) Gọi x, y lần lượt là số kg dừa và số kg đường cần tìm (kg, x, y N*; x, y <6)

Theo đề ta có:  $\frac{x}{2}=\frac{y}{1}$  và x + y = 6

Áp dụng tính chất dãy tỉ số bằng nhau có:

$\frac{x}{2}=\frac{y}{1}=\frac{x+y}{2+1}=\frac{6}{3}=2$

x = 2 . 2 = 4; y = 2.1 =  2 

Vậy 6 kg mứt dừa có 4 kg dừa và 2 kg đường

b) Gọi x là số gam đường cần tìm (g, 0 < x < 600)

Theo đề ta có:  $\frac{600}{x}=\frac{3}{2}$

⇒ x = 600 . 3: 2 = 400 

Vậy hai bạn Dung và Thúy cần mua 400 gam đường. 

c) Gọi số quyển vở Chi chia cho An và Bình lần lượt là x, y ( quyển, x,y N*; x, y < 10)

Theo đề bài ta có: $\frac{x}{8}=\frac{y}{12}$ và x + y = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có: $\frac{x}{8}=\frac{y}{12}=\frac{x+y}{8+12}=\frac{10}{20}=\frac{1}{2}$

=> x = 8: 2 = 4; y = 12: 2 = 6

Vậy Chi cho An 4 quyển vở và chia cho Bình 6 quyển vở.

Tính chất 2:

=> Kết luận:

Từ dãy tỉ số bằng nhau

$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$ ta viết được:

$\frac{a}{b}=\frac{c}{d}=\frac{a+c+e}{b+d+f}=\frac{a-c+e}{b-d+f}$

(các mẫu số phải khác 0).

Thực hành 5.

x: y: z = 2: 3: 5 

=> $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{100}{10}$ = 10

Vậy ta có x = 10.2 = 20;  y = 10.3 = 30; z = 10.5 = 50

Vận dụng 5.

Đầu năm, các bác Xuân, Yến, Dũng góp vốn làm ăn với số tiền lần lượt là 300 triệu đồng, 400 triệu đồng và 500 triệu đồng. Tiền lãi thu được sau một năm là 240 triệu đồng. Hãy tìm số tiền lãi mỗi bác được chia, biết rằng tiền lãi được chia tỉ lệ với số vốn đã góp.

Gọi số tiền lãi của các bác Xuân, Yến, Dũng lần lượt là: x, y, z (x, y, z N*;x, y, z<240) (triệu đồng)

Vì số tiền lãi của các bác lần lượt tỉ lệ với số tiền vốn đã góp nên ta có:

$\frac{x}{300}=\frac{y}{400}=\frac{z}{500}=\frac{x+y+z}{300+400+500}=\frac{240}{1200}=\frac{1}{5}$

=>  x = 300 . $\frac{1}{5}$ = 60 

y = 400. $\frac{1}{5}$ = 80

z =  500 . $\frac{1}{5}$ = 100

Vậy số tiền lãi của các bác Xuân, Yến, Dũng lần lượt là: 60 triệu đồng, 80 triệu đồng, 100 triệu đồng.

Xem thêm các bài Giải toán 7 tập 2 chân trời sáng tạo, hay khác:

Xem thêm các bài Giải toán 7 tập 2 chân trời sáng tạo được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 7 giúp bạn học tốt hơn.

Lớp 7 | Để học tốt Lớp 7 | Giải bài tập Lớp 7

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 7, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 7 giúp bạn học tốt hơn.