Giải toán 11 Cánh diều bài 3 Cấp số nhân

Giải bài 3: Cấp số nhân sách toán 11 tập 1 cánh diều. Phần đáp án chuẩn, hướng dẫn giải chi tiết cho từng bài tập có trong chương trình học của sách giáo khoa. Hi vọng, các em học sinh hiểu và nắm vững kiến thức bài.

Bài tập & Lời giải

MỞ ĐẦU

Vi khuẩn E. coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại phân đôi một lần. (Nguồn: Sinh học 10, NXB Giáo dục Việt Nam, 2010). 

Giả sử lúc đầu có 100 vi khuẩn E. coli.

Câu hỏi: Hỏi có bao nhiêu vi khuẩn E. coli sau 180 phút? 

Hỏi có bao nhiêu vi khuẩn E. coli sau 180?

Xem lời giải

I. ĐỊNH NGHĨA

Luyện tập, vận dụng 1: Cho cấp số nhân ($u_{n}$) với $u_{1}=-6,u_{2}=-2$. 

a) Tìm công bội $q$. 

b) Viết năm số hạng đầu của cấp số nhân đó. 

Xem lời giải

Luyện tập, vận dụng 2: Cho dãy số ($u_{n}$) với $u_{n}=3.2^{n} \left ( n\geq 1 \right )$. Dãy ($u_{n}$) có là cấp số nhân không? Vì sao? 

Xem lời giải

II. SỐ HẠNG TỔNG QUÁT

Luyện tập, vận dụng 3: Bác Linh gửi vào ngân hàng 100 triệu đồng tiền tiết kiệm với hình thức lãi kép, kì hạn 1 năm với lãi suất 6%/năm. Viết công thức tính số tiền (cả gốc và lãi) mà bác Linh có được sau $n$ năm (giả sử lãi suất không thay đổi qua các năm). 

Xem lời giải

III. TỔNG $n$ SỐ HẠNG ĐẦU CỦA MỘT CẤP SỐ NHÂN

Luyện tập, vận dụng 4: Tính tổng $n$ số hạng đầu của mỗi cấp số nhân sau:

a) $3, -6, 12, -24, ...$ với $n=12$;

b) $\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}$ với $n=5$. 

Xem lời giải

Bài tập 1 trang 56 sgk Toán 11 tập 1 Cánh diều: Trong các dãy số sau, dãy số nào là cấp số nhân? Vì sao?

a) $5; -0,5; 0,05; -0,005; 0,0005$;

b) $-9, 3, -1, \frac{1}{3}, -\frac{1}{9}$;

c) $2, 8, 32, 64, 256$. 

Xem lời giải

Bài tập 2 trang 56 sgk Toán 11 tập 1 Cánh diều: Chứng minh mỗi dãy số ($u_{n}$) với số hạng tổng quát như sau là cấp số nhân:

a) $u_{n}=\frac{-3}{4}.2^{n}$;

b) $u_{n}=\frac{5}{3^{n}}$;

c) $u_{n}=(-0.75)^{n}$. 

Xem lời giải

Bài tập 3 trang 56 sgk Toán 11 tập 1 Cánh diều: Cho cấp số nhân ($u_{n}$) với số hạng đầu $u_{n}=-5$, công bội $q=2$. 

a) Tìm $u_{9}$. 

b) Số $-320$ là số hạng thứ bao nhiêu của cấp số nhân trên?

c) Số $160$ có phải là một số hạng của cấp số nhân trên không? 

Xem lời giải

Bài tập 4 trang 56 sgk Toán 11 tập 1 Cánh diều: Cho cấp số nhân ($u_{n}$) với $u_{1}=3, u_{3}=\frac{27}{4}$. 

a) Tìm công bội $q$ và viết năm số hạng đầu của cấp số nhân trên. 

b) Tính tổng 10 số hạng đầu của cấp số nhân trên. 

Xem lời giải

Bài tập 5 trang 56 sgk Toán 11 tập 1 Cánh diều: Một tỉnh có 2 triệu dân vào năm 2020 với tỉ lệ tăng dân số là 1%/năm. Gọi $u_{n}$ là dân số của tỉnh đó sau $n$ năm. Giả sử tỉ lệ tăng dân số là không đổi. 

a) Viết công thức tính số dân của tỉnh đó sau $n$ năm kể từ năm 2020.

b) Tính số dân của tỉnh đó sau 10 năm kể từ năm 2020. 

Xem lời giải

Bài tập 6 trang 56 sgk Toán 11 tập 1 Cánh diều: Một gia đình mua một chiếc ô tô giá 800 triệu đồng. Trung bình sau mỗi năm sử dụng, giá trị còn lại của ô tô giảm đi 4% (so với năm trước đó). 

a) Viết công thức tính giá trị của ô tô sau 1 năm, 2 năm sử dụng. 

b) Viết công thức tính giá trị của ô tô sau $n$ năm sử dụng. 

c) Sau 10 năm, giá trị của ô tô ước tính còn bao nhiêu triệu đồng? 

Xem lời giải

Bài tập 7 trang 56 sgk Toán 11 tập 1 Cánh diều: Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây đai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy được kéo lên một quãng đường có độ dài bằng 75% so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa được kéo lên (Hình 3). Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống. 

 Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống.

Xem lời giải

Hoạt động 1 trang 53 Toán 11 tập 1 CD: Cho dãy số $\frac{1}{3}$ ; 1; 3; 9; 27; 81; 243. Kể từ số hạng thứ hai, nêu mối liên hệ của mỗi số hạng với số hạng đứng ngay trước nó.

Xem lời giải

Hoạt động 2 trang 54 Toán 11 tập 1 CD: Cho cấp số nhân ($u_{n}$) có số hạng đầu $u_{1}$, công bội q.

a) Viết năm số hạng đầu của cấp số nhân theo $u_{1}$ và q.

b) Dự đoán công thức tính $u_{n}$ theo $u_{1}$ và q.

Xem lời giải

Hoạt động 3 trang 55 Toán 11 tập 1 CD: Cho cấp số nhân ($u_{n}$) có số hạng đầu $u_{1}$, công bội q ≠ 1. Đặt $S_{n} = u_{1} + u_{2} + u_{3} + ... + u_{n} = u_{1} + u_{1}q + u_{1}q^{2} + ... + u_{1}q^{n-1}$.

a) Tính $S_{n}.q$ và $S_{n} – S_{n}.q$.

b) Từ đó, hãy tìm công thức tính $S_{n}$ theo $u_{1}$ và q.

Xem lời giải

Xem thêm các bài Giải toán 11 tập 1 cánh diều, hay khác:

Xem thêm các bài Giải toán 11 tập 1 cánh diều được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 11 giúp bạn học tốt hơn.

Lớp 11 | Để học tốt Lớp 11 | Giải bài tập Lớp 11

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 11, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 11 giúp bạn học tốt hơn.