Câu 2: Trang 77 - sgk giải tích 12
Tính đạo hàm của các hàm số:
a) $y=2xe^{x}+3\sin 2x$
b) $y=5x^{2}+2^{x}\cos x$
c) $y=\frac{x+1}{3^{x}}$
Bài Làm:
a) $y=2xe^{x}+3\sin 2x$
=> $y'=(2xe^{x}+3\sin 2x)'=(2xe^{x})'+(3\sin 2x)'$
=> $y'=2e^{x}+2xe^{x}+3\cos 2x(2x')$
=> $y'=2e^{x}+2xe^{x}+6\cos 2x$
b) $y=5x^{2}+2^{x}\cos x$
=> $y'=(5x^{2}+2^{x}\cos x)'=(5x^{2})'+(2^{x}\cos x)'$
=> $y'=10x-\left [ (2^{x})\cos x+2^{x}(\cos x)' \right ]$
=> $y'=10x-2^{x}\ln 2.\cos x+2^{x}\sin x$
c) $y=\frac{x+1}{3^{x}}$
=> $y'=(\frac{x+1}{3^{x}})'$
=> $y'=\frac{(x+1)'.3^{x}-(x+1).(3^{x})'}{(3^{2x})^{2}}$
=> $y'=\frac{1-(x+1)\ln 3}{3^{x}}$