Câu 75: Trang 40 - sgk toán 9 tập 1
Chứng minh các đẳng thức sau :
a. $\left ( \frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3} \right ).\frac{1}{\sqrt{6}}=-1,5$
b. $\left ( \frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}} \right ):\frac{1}{\sqrt{7}-\sqrt{5}}=-2$
c. $\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=a-b$ ( với a , b >0 và $a\neq b$ )
d. $\left ( 1+\frac{a+\sqrt{a}}{\sqrt{a}+1} \right )\left ( 1-\frac{a-\sqrt{a}}{\sqrt{a}-1} \right )=1-a$ ( với $a\geq 0,a\neq 1$ )
Bài Làm:
Ta có :
a.
Xét $VT=\left ( \frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3} \right ).\frac{1}{\sqrt{6}}$
$VT=\left ( \frac{\sqrt{6} (\sqrt{2}-1)}{2(\sqrt{2}-1)}\right ).\frac{1}{\sqrt{6}}$
$VT=\left ( \frac{\sqrt{6}}{2}-2\sqrt{6} \right ).\frac{1}{\sqrt{6}}$
$VT=\left ( \frac{-3}{2}.\sqrt{6} \right ).\frac{1}{\sqrt{6}}$
$VT=-\frac{3}{2}=-1,5$
Nhận xét : VT = VP = - 1,5
=> ( đpcm ).
b.
Xét $VT=\left ( \frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}} \right ):\frac{1}{\sqrt{7}-\sqrt{5}}$
$VT=\left ( \frac{\sqrt{7}(\sqrt{2}-1)}{1-\sqrt{2}}+\frac{\sqrt{5(\sqrt{3}-1)}}{1-\sqrt{3}} \right ):\frac{1}{\sqrt{7}-\sqrt{5}}$
$VT=(-\sqrt{7}-\sqrt{5})(\sqrt{7}-\sqrt{5})$
$VT=-(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=-(7-5)=-2$
Nhận xét : VT = VP = - 2
=> ( đpcm ).
c.
Xét $VT=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}$
$VT=\frac{\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}$
$VT=\frac{\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{ab}}.{\sqrt{a}-\sqrt{b}}=a-b$
Nhận xét : VT = VP = a - b
=> ( đpcm ).
d.
Xét $VT=\left ( 1+\frac{a+\sqrt{a}}{\sqrt{a}+1} \right )\left ( 1-\frac{a-\sqrt{a}}{\sqrt{a}-1} \right )$
$VT=\left ( 1+\frac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1} \right )\left ( 1-\frac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1} \right )$
$VT=(1+\sqrt{a})(1-\sqrt{a})=1-a$
Nhận xét : VT = VP = 1 - a
=> ( đpcm ).