Câu 72: Trang 40 - sgk toán 9 tập 1
Phân tích thành nhân tử ( với các số x, y, a, b không âm và a ≥ b )
a. $xy-y\sqrt{x}+\sqrt{x}-1$
b. $\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}$
c. $\sqrt{a+b}+\sqrt{a^{2}-b^{2}}$
d. $12-\sqrt{x}-x$
Bài Làm:
Ta có :
a. $xy-y\sqrt{x}+\sqrt{x}-1$
= $y\sqrt{x}(\sqrt{x}-1)+(\sqrt{x}-1)$
= $(\sqrt{x}-1)(y\sqrt{x}+1)$
Vậy $xy-y\sqrt{x}+\sqrt{x}-1=(\sqrt{x}-1)(y\sqrt{x}+1)$
b. $\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}$
= $(\sqrt{ax}+\sqrt{bx})-(\sqrt{ay}+\sqrt{by})$
= $\sqrt{x}(\sqrt{a}+\sqrt{b})-\sqrt{y}(\sqrt{a}+\sqrt{b})$
= $(\sqrt{a}+\sqrt{b})(\sqrt{x}-\sqrt{y})$
Vậy $\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}=(\sqrt{a}+\sqrt{b})(\sqrt{x}-\sqrt{y})$
c. $\sqrt{a+b}+\sqrt{a^{2}-b^{2}}$
= $\sqrt{a+b}+\sqrt{(a+b)(a-b)}$
= $\sqrt{a+b}(1+\sqrt{a-b})$
Vậy $\sqrt{a+b}+\sqrt{a^{2}-b^{2}}=\sqrt{a+b}(1+\sqrt{a-b})$
d. $12-\sqrt{x}-x=12-4\sqrt{x}+3\sqrt{x}-x$
= $4(3-\sqrt{x})+\sqrt{x}(3-\sqrt{x})$
= $(3-\sqrt{x})(4+\sqrt{x})$
Vậy $12-\sqrt{x}-x=(3-\sqrt{x})(4+\sqrt{x})$