Câu 30: trang 48 sgk Toán 8 tập 2
Một người có số tiền không quá 70 000 đồng gồm 15 tờ giấy bạc với hai loại mệnh giá: loại 2000 đồng và loại 5000 đồng. Hỏi người đó có bao nhiêu tờ giấy bạc loại 5000 đồng?
Bài Làm:
Gọi x là số tờ giấy bạc loại 5000 đồng \((x \in N^*, x<15)\)
Số tờ giấy bạc loại 2000 đồng là \(15 – x\)
Vì số tiền không quá 70000 nên ta lập được bất phương trình:
\(5000x + 2000(15 – x ) ≤ 70000\)
\(\Leftrightarrow 5000x + 30000 – 2000x ≤ 70000\)
\(\Leftrightarrow 3000x ≤ 70000-30000\)
\(\Leftrightarrow 3000x ≤ 40000\)
\(\Leftrightarrow 3x ≤ 40\)
\(\Leftrightarrow x ≤{{40} \over 3}\)
So với điều kiện thì \(0 < x \le {{40} \over 3}\) mà x là số nguyên dương nên x có thể là số nguyên dương từ 1 đến 13
Vậy số từ giấy bạc loại 5000đ người ấy có thể có là các số nguyên dương từ 1 đến 13.