Hướng dẫn giải & Đáp án
ĐỀ THI
Bài 1: (2,0 điểm)
Cho biểu thức:
$A=\frac{a\sqrt{a}-1}{a-\sqrt{a}} -\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left [ \sqrt{a}-\frac{1}{\sqrt{a}} \right ]\left [ \frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1} \right ]$
a. Rút gọn A
b. Tìm a để A > 6
Xem lời giải
Bài 2: (2,0 điểm)
1. Cho Phương trình: $mx^{2} - 2(m + 1)x + (m - 4) = 0$ (m là tham số).
a. Xác định m để các nghiệm $x_{1}; x_{2}$ của Phương trình thoả mãn $x_{1} + 4x_{2} = 3$
b. Tìm một hệ thức giữa $x_{1}; x_{2}$ mà không phụ thuộc vào m
2. giải hệ phương trình
$\left\{\begin{matrix}(x-1)(y-2)+(x+1)(y-3)= 4& & \\ (x-3)(y+1)-(x-3)(y-5)=1& & \end{matrix}\right.$
Xem lời giải
Bài 3: (1,5 điểm)
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Một ca nô xuôi từ bến A đến B cách nhau 40km, sau đó lại ngược trở về A. Hãy tính vận tốc riêng của ca nô biết rằng thời gian ca nô đi xuôi ít hơn thời gian ca nô đi ngược là 20 phút, vận tốc dòng nước là 3km/h và vận tốc riêng của ca nô không đổi.
Xem lời giải
Bài 4: (3,5 điểm)
Cho nửa đường tròn tâm O, đường kính AB = 2R. C là điểm nằm bất kì trên đường tròn sao cho C ≠A,B và AC < CB. D thuộc cung nhỏ BC sao cho ∠DOC = $90^{0}$. E là giao điểm của AD và BC; F là giao điểm của AC và BD
a. Chứng minh rằng tứ giác CEDF là tứ giác nội tiếp
b. Chứng minh rằng FC. FA = FD. FB
c. I là trung điểm của EF. Chứng minh rằng IC là tiếp tuyến của (O)
d. Khi C thay đổi thỏa mãn điều kiện của bài toán thì I thuộc đường tròn cố định nào?
Xem lời giải
Bài 5: (1,0 điểm)
Cho các số a, b, c thỏa mãn điều kiện 0 < a < b và phương trình $ax^{2} + bx + c =0$ vô nghiệm. Chứng minh rằng:
$\frac{a+b+c}{b-a}>3$