Lý thuyết trọng tâm toán 7 chân trời bài 3: Lũy thừa của một số hữu tỉ

Tổng hợp kiến thức trọng tâm toán 7 chân trời sáng tạo bài 3 Lũy thừa của một số hữu tỉ. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo

BÀI 3. LŨY THỪA CỦA MỘT SỐ HỮU TỈ

1. LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN 

BT: Tính

a) 3$^{3}$ = 3.3.3 = 27                   

b)(-4)$^{2}$ = (-4).(-4) = 16               

c) 0,5$^{2}$ = 0,5.0,5 = 0,25

Kết luận:

Lũy thừa bậc n của một số hữu  tỉ x, kí hiệu x$^{n}$, là tích của n thừa số x.

x$^{n}$=x.x.x….x⏟n thừa số

(x∈Q,n∈N,n>1)

Ta đọc x$^{n}$ là “x mũ n” hoặc “x lũy thừa n” hoặc “lũy thừa bậc n của x”

Quy ước:

x$^{1}$=xx$^{0}$=1(x≠0)

Thực hành 1: 

($\frac{-2}{3}$)$^{3}$ = $\frac{-8}{27}$  ;  ($\frac{-3}{5}$)$^{2}$ = $\frac{9}{25}$;

(-0,5)$^{3}$ =($\frac{-1}{2}$)$^{3}$ = $\frac{-1}{8}$ ; 

(-0,5)$^{2}$ =($\frac{-1}{2}$)$^{2}$ = $\frac{1}{4}$ ;

(37,57)$^{0}$ = 1 ; (3,57)$^{0}$ = 3,57

2. TÍCH VÀ THƯƠNG CỦA HAI LŨY THỪA CÙNG CƠ SỐ

HĐKP1:

a) ($\frac{1}{3}$)$^{2}$ . ($\frac{1}{3}$)$^{2}$ = ($\frac{1}{3}$)$^{4}$;

b) (0,2)$^{2}$ . (0,2)$^{3}$ = (0,2)$^{5}$

Kết luận:

Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng hai số mũ.

x$^{m}$.x$^{n}$=x$^{m+n}$

Khi chia hai lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị trừ đi số mũ của lũy thừa chia.

x$^{m}$:x$^{n}$=x$^{m-n}$ (x 0; m n)

Thực hành 2:

a)  (-2)$^{2}$.(-2)$^{3}$=(-2)$^{5}$

b) (-0,25)$^{7}$:(-0,25)$^{5}$=(-0,25)$^{2}$

=($\frac{1}{4}$)$^{2}$=$\frac{1}{16}$

c) ($\frac{3}{4}$)$^{2}$.($\frac{3}{4}$)$^{2}$=($\frac{3}{4}$)$^{2}$

3. LŨY THỪA CỦA LŨY THỪA

HĐKP2:

a) [(-2)$^{2}$ ]$^{3}$ = (-2)$^{6}$ 

b) [($\frac{1}{2}$)$^{2}$]$^{2}$ = ($\frac{1}{2}$)$^{4}$ 

Kết luận:

Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ.

(x$^{m}$)$^{n}$=x$^{m.n}$

Thực hành 3:

a) [(-$\frac{2}{3}$)$^{2}$]$^{5}$ = ($\frac{2}{3}$)$^{10}$ 

b) [(0,4)$^{3}$ ]$^{3}$ = (0,4)$^{9}$

c) [(7,31)$^{3}$]$^{0}$ = 1

Vận dụng:

a) Khoảng cách từ Mặt Trời đến Sao Thủy dài khoảng 58 000 000 km được viết là: 5,8 . 10$^{7}$ km.

b) Một năm ánh sáng có độ dài khoảng 9 460 000 000 km được viết là: 9,46 . 10$^{9}$ km.

Xem thêm các bài Giải toán 7 tập 1 chân trời sáng tạo, hay khác:

Xem thêm các bài Giải toán 7 tập 1 chân trời sáng tạo được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 7 giúp bạn học tốt hơn.

Lớp 7 | Để học tốt Lớp 7 | Giải bài tập Lớp 7

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 7, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 7 giúp bạn học tốt hơn.