Luyện tập 1 trang 64 Toán 11 tập 2 Cánh diều. Cho hàm số $y=x^{22}$
a) Tính đạo hàm của hàm số trên tại điểm x bất kì
b) Tính đạo hàm của hàm số trên tại điểm $x_{0}=-1$
Bài Làm:
a) $y'=22x^{21}$
b) $y (-1)= 22.(-1)^{21}=-22$
Luyện tập 1 trang 64 Toán 11 tập 2 Cánh diều. Cho hàm số $y=x^{22}$
a) Tính đạo hàm của hàm số trên tại điểm x bất kì
b) Tính đạo hàm của hàm số trên tại điểm $x_{0}=-1$
Bài Làm:
a) $y'=22x^{21}$
b) $y (-1)= 22.(-1)^{21}=-22$
Trong: Giải toán 11 Cánh diều Chương VII bài 2 Các quy tắc tính đạo hàm
Hoạt động 1 trang 64 Toán 11 tập 2 Cánh diều
a) Tính đạo hàm của hàm số $y=x^{2}$ tại điểm $x_{0}$ bất kí bằng định nghĩa
b) Dự đoán đạo hàm của hàm số $y=x^{n}$ tại điểm x bất kì
Hoạt động 2 trang 65 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $y=\sqrt{x}$ tại điểm $x_{0}=1$ bằng định nghĩa
Luyện tập 2 trang 65 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $f(x)=\sqrt{x}$ tại điểm $x_{0}=9$
Hoạt động 3 trang 65 Toán 11 tập 2 Cánh diều: Bằng cách sử dụng kết quả $\lim_{x\rightarrow 0}\frac{sinx}{x}=1$ , tính đạo hàm của hàm số y = sinx tại điểm x bất kì bằng định nghĩa
Luyện tập 3 trang 65 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $f(x)=sinx$ tại điểm $x_{0}=\frac{\pi }{2}$
Hoạt động 4 trang 65 Toán 11 tập 2 Cánh diều: Bằng định nghĩa, tính đạo hàm của hàm số $y = cos x$ tại điểm x bất kì
Luyện tập 4 trang 66 Toán 11 tập 2 Cánh diều: Một vật dao động theo phương trình $f(x)=cosx$, trong đó x là thời gian tính theo giây. Tính vận tốc tức thời của vật tại thời điểm $x_{0}=2$ (s)
Giải hoạt động 5 trang 66 Toán 11 tập 2 Cánh diều: Bằng định nghĩa, tính đạo hàm của hàm số $y=tanx$ tại điểm x bất kì
Giải luyện tập 5 trang 66 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $f(x)=tanx$ tại điểm $x_{0}=\frac{-\pi }{6}$
Hoạt động 6 trang 66 Toán 11 tập 2 Cánh diều: Bằng định nghĩa, tính đạo hàm của hàm số $y=cotx$ tại điểm x bất kì
Luyện tập 6 trang 66 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $f(x)=cotx$ tại điểm $x_{0}=\frac{-\pi }{3}$
Hoạt động 7 trang 67 Toán 11 tập 2 Cánh diều: Bằng cách sử dụng kết quả $\lim_{x\rightarrow 0}\frac{e^{x}-1}{x}=1$, tính đạo hàm của hàm số $y=e^{x}$ tại điểm x bất kì bằng định nghĩa
Luyện tập 7 trang 67 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $f(x)=10^{x}$ tại điểm $x_{0}=-1$
Hoạt động 8 trang 67 Toán 11 tập 2 Cánh diều: Bằng cách sử dụng kết quả $\lim_{x\rightarrow 0}\frac{ln(1+x)}{x}=1$, tính đạo hàm của hàm số $y=lnx$ tại điểm x bất kì bằng định nghĩa
Hoạt động 8 trang 67 Toán 11 tập 2 Cánh diều: Bằng cách sử dụng kết quả $\lim_{x\rightarrow 0}\frac{ln(1+x)}{x}=1$, tính đạo hàm của hàm số $y=lnx$ tại điểm x bất kì bằng định nghĩa
Luyện tập 8 trang 67 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $f(x)=logx$ tại điểm $x_{0}=\frac{1}{2}$
Hoạt động 9 trang 68 Toán 11 tập 2 Cánh diều: Cho hai hàm số f(x), g(x) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm $x_{0}\in (a; b)$
Xét hàm số $h(x)=f(x)+g(x),x\in (a; b)$. So sánh
$\lim_{\Delta x\rightarrow 0}\frac{h(x_{0}+\Delta x)-h(x_{0})}{\Delta x} $ và
$\lim_{\Delta x\rightarrow 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} +\lim_{\Delta x\rightarrow 0}\frac{g(x_{0}+\Delta x)-g(x_{0})}{\Delta x}$
b) Nêu nhận xét về $h'(x_{0}) và f'(x_{0})+g'(x_{0})$
Luyện tập 9 trang 68 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số: $f(x)=x\sqrt{x}$ tại điểm x dương bất kì
Luyện tập 10 trang 69 Toán 11 tập 2 Cánh diều: Tính đạo hàm của hàm số $f(x)=tanx+cotx$ tại điểm $x_{0}=\frac{\pi }{3}$
Hoạt động 10 trang 69 Toán 11 tập 2 Cánh diều: Cho hàm số $y=f(u)=sinu; u=g(x)=x^{2}$
a) Bằng cách thay u bởi $x^{2}$ trong biểu thức $sinu$, hãu biểu thị giá trị của y theo biến số x
b) Xác định hàm số $y=f(g(x))$
Luyện tập 11 trang 69 Toán 11 tập 2 Cánh diều: Hàm số $y=log_{2}(3x+1)$ là hàm hợp của hai hàm số nào
Bài 1 trang 71 Toán 11 tập 2 Cánh diều: Cho $u = u(x)$, $v = v(x)$, $w = w(x)$ là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
a) $(u+v+w)'=u'+v+w';$
b) $(u+v-w)'=' + v'-w';$
c) $(uv)'=u'v';$
d) $\left ( \frac{u}{v} \right )'=\frac{u'}{v'}$ với $v=v(x)\neq 0, v'=v'(x)\neq 0$
Bài 2 trang 71 Toán 11 tập 2 Cánh diều: Cho $u= u(x), v = v(x), w = w(x)$ là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Chứng minh rằng $(u.v.w)'=u' .v.w+u.v'.w+u.v.w'$
Bài 3 trang 71 Toán 11 tập 2 Cánh diều: Tính đạo hàm của mỗi hàm số sau
a) $y=4x^{3}-3x^{2}+2x+10$
b) $y=\frac{x+1}{x-1}$
c) $y=-2x\sqrt{x}$
d) $y=3sinx+4cosx-tanx$
e) $y=4^{x}+2e^{x}$
g) $y=xlnx$
Bài 4 trang 71 Toán 11 tập 2 Cánh diều: Cho hàm số $f(x)=2^{3x+2}$
a) Hàm số f(x) là hàm hợp của các hàm số nào
b) Tìm đạo hàm f(x)
Bài 5 trang 72 Toán 11 tập 2 Cánh diều: Tìm đạo hàm của mỗi hàm số sau:
a) $sin3x+sin^{2}x$
b) $log_{2}(2x+1)+3^{-2x+1}$
Xem thêm các bài Giải toán 11 tập 2 cánh diều được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 11 giúp bạn học tốt hơn.
Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 11, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 11 giúp bạn học tốt hơn.