Giải câu 3: Trang 41 sách VNEN toán 8 tập 1
Chứng minh: $\frac{2x^{2}+3xy+y^{2}}{2x^{3}+x^{2}y-2xy^{2}-y^{3}}$=$\frac{1}{x-y}$
Bài Làm:
Hướng dẫn giải:
Ta có: $\frac{2x^{2}+3xy+y^{2}}{2x^{3}+x^{2}y-2xy^{2}-y^{3}}$=$\frac{2x^{2}+2xy+xy+y^{2}}{2x^{3}-2xy^{2}+x^{2}y-y^{3}}$
=$\frac{2x(x+y)+y(x+y)}{2x(x^{2}-y^{2})+y(x^{2}-y^{2})}$=$\frac{(2x+y)(x+y)}{(2x+y)(x^{2}-y^{2})}$
=$\frac{(2x+y)(x+y)}{(2x+y)(x+y)(x-y)}$=$\frac{1}{x-y}$
Vậy sau khi rút gọn phân thức ta thu được $\frac{2x^{2}+3xy+y^{2}}{2x^{3}+x^{2}y-2xy^{2}-y^{3}}$=$\frac{1}{x-y}$ (điều phải chứng minh)