Giải câu 2 bài các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

Bài tập 2. Biểu đồ đoạn thẳng ở Hình 3 biểu diễn tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2012 – 2019. 

Giải bài 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

a. Viết mẫu số liệu thống kê tốc độ tăng trưởng GDP nhận được từ biểu đồ ở Hình 3. 

b. Tìm khoảng biến thiên của mẫu số liệu đó. 

c. Tìm khoảng tứ phân vị của mẫu số liệu đó. 

d. Tính phương sai và độ lệch chuẩn của mẫu số liệu đó.

Bài Làm:

a. 5, 25   5,42   5,98   6,68   6,21   6,81   7,08   7,02

b. Mẫu số liệu được sắp xếp theo thứ tự không giảm là: 5, 25   5,42   5,98   6,21   6,68   6,81   7,02   7,08

$R=7,08-5,25=1,83$

c. Trung vị của mẫu số liệu là: $Q_2=\frac{6,21+6,68}{2}=6445$

Trung vị của dãy 5, 25   5,42   5,98   6,21 là $Q_1=\frac{5,42+5,98}{2}=5,7$

Trung vị của dãy 6,68   6,81   7,02   7,08 là $Q_3=\frac{6,81+7,02}{2}=6,915$

$\Rightarrow \Delta_Q=Q_3-Q_1=6,915-5,7=1,215$

d. Ta có: $\bar{x}=6,31$

$s^2=\frac{(5,25-6,31)^2+(5,42-6,31)^2+(5,98-6,31)^2+(6,68-6,31)^2+(6,21-6,31)^2+6,81-6,31)^2+(7,08-6,31)^2}{8}\\+\frac{(7,02-6,31)^2}{8}$

$=0.4398125$

$\Rightarrow s=\sqrt{s^2} \approx 0,66$

Xem thêm Bài tập & Lời giải

Trong: Giải bài 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

Bài tập 1. Trong 5 lần nhảy xa, hai bạn Hùng và Trung có kết quả (đơn vị: mét) lần lượt là

Giải bài 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

a. Kết quả trung bình của hai bạn có bằng nhau hay không?

b. Tính phương sai của mẫu số liệu thống kê kết quả 5 lần nhảy xa của mỗi bạn. Từ đó cho biết bạn nào có kết quả nhảy xa ổn định hơn. 

Xem lời giải

Bài tập 3. Biểu đồ đoạn thẳng ở Hình 4 biểu diễn giá vàng bán ra trong bảy ngày đầu tiên của tháng 6 năm 2021. 

Giải bài 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

a. Viết mẫu số liệu thống kê giá vàng bán ra nhận được từ biểu đồ ở Hình 4.

b. Tìm khoảng biến thiên của mẫu số liệu đó. 

c. Tìm khoảng tứ phân vị của mẫu số liệu đó. 

d. Tính phương sai và độ lệch chuẩn của mẫu số liệu đó.

Xem lời giải

Bài tập 4. Để biết cây đậu phát triển như thế nào sau khi gieo hạt, bạn Châu gieo 5 hạt  đậu vào 5 chậu riêng biệt và cung cấp cho chúng lượng nước, ánh sáng như nhau. Sau hai tuần, 5 hạt đậu đã nảy mầm và phát triển thành 5 cây con. Bạn Châu đo chiều cao từ rễ đến ngọn của mỗi cây (đơn vị: mi-li-mét) và ghi kết quả là mẫu số liệu sau:

112 102 106 94 101 

a. Tính phương sai và độ lệch chuẩn của mẫu số liệu trên. 

b. Theo em, các cây có phát triển đồng đều hay không?

Xem lời giải

Xem thêm các bài Giải Toán 10 tập 2 cánh diều, hay khác:

Xem thêm các bài Giải Toán 10 tập 2 cánh diều được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập