Bài tập 9 trang 136 Toán 8 tập 2 KNTT. Cho tam giác ABC. Các đường trung tuyến AF, BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của BG và CG
a) Chứng minh rằng tứ giác DEKI là hình bình hành
b) Biết AF = 6cm. Tính độ dài các đoạn thẳng DI và EK
Bài Làm:
Xét tam giác ABC có:
D là đường trung tuyến của AB
E là đường trung tuyến của AC
=> DE là đường trung bình của tam giác ABC
=> DE // BC (1)
Tương tự, có IK là đường trung bình của tam giác GBC
=> IK // BC (2)
=> DE // IK (3)
- Có ID là đường trung bình của tam giác ABG => ID // AG
EK là đường trung bình của tam giác ACG => EK // AG
=> ID // EK (4)
Từ (3) và (4) => DEIK là hình bình hành
b) Có điểm G là trọng tâm của tam giác ABC => $AG=\frac{2}{3}AF$ => AG = 4cm
=> $DI = EK=\frac{1}{2}AG=2$ cm