Bài tập 6 trang 104 sgk Toán 11 tập 1 Cánh diều: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD).
b) Chứng minh rằng MN song song với mặt phẳng (SCD) và NG song song với mặt phẳng (SAC).
Bài Làm:
a) S là điểm chung của hai mặt phẳng (SAB) và (SCD) mà AB // CD
Từ S kẻ Sx sao cho Sx // AB // CD nên Sx là giao tuyến của hai mặt phẳng (SAB) và (SCD).
b) Gọi I, K là trung điểm của BC, AC
mà hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường
Suy ra K là trung điểm của BD
$\triangle $DAB có: $\frac{DN}{DB}=\frac{DK+KN}{DB}=\frac{\frac{1}{2}DB+\frac{1}{6}DB}{DB}=\frac{2}{3}=\frac{DM}{DA}$
Suy ra: MN // AB mà AB // CD
Do đó: MN // CD nên MN // (SCD).
Gọi E là trung điểm của AB
G là trọng tâm $\triangle $SAB nên $\frac{EG}{SE}=\frac{1}{3}$
N là trọng tâm $\triangle $ABC nên $\frac{EN}{EC}=\frac{1}{3}$
$\triangle $ESC có: $\frac{EG}{SE}=\frac{EN}{EC}$ suy ra GN // SC
mà SC thuộc (SAC). Do đó: GN // (SAC).