Câu 33. Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy. Ngọn tháp hình tứ giác đều S ABCD . cạnh bên SA = 600 mét, $\widehat{ASB} = 15^{0}$ . Do có sự cố đường dây điện tại điểm Q (là trung điểm của SA ) bị hỏng, người ta tạo ra một con đường từ A đến Q gồm bốn đoạn thẳng: AM , MN , NP , PQ (hình vẽ). Để tiết kiệm kinh phí, kỹ sư đã nghiên cứu và có được chiều dài con đường từ A đến Q ngắn nhất. Tính tỷ số $k=\frac{AM + MN}{NP + PQ}$
a. $k=\frac{3}{2}$
b. $k=\frac{4}{3}$
c. $k=\frac{5}{3}$
d. k = 2
Bài Làm:
Chọn đáp an D. K = 2
Lời giải chi tiết:
Giả sử trải các mặt hình chóp đều trên đường tròn tâm S và bán kính R SA = . Ta có ∆SAA′ có $\widehat{ASA'} = 15^{0} . 4 = 60^{0}$ => ∆SAA′ đều. Mà đoạn đường AQ ngắn nhất khi A , M , N , P , Q thẳng hàng.Khi đó N là trọng tâm ∆SAA′ . Suy ra $K = \frac{AM + MN}{NP + PQ} = \frac{AN}{NQ} = 2$