Câu 9: trang 143 sgk toán Đại số và giải tích 11
Mệnh đề nào sau đây là mệnh đề đúng?
A. Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn luôn giảm
B. Nếu \((u_n)\) là dãy số tăng thì \(\lim u_n= + ∞\)
C. Nếu \(\lim u_n= + ∞\) và \(\lim v_n= + ∞\) thì \(\lim (u_n– v_n) = 0\)
D. Nếu \(u_n= a^n\) và \(-1< a < 0\) thì \(\lim u_n=0\)
Bài Làm:
- Câu A sai
“Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn giảm” là mệnh đề sai.
Ví dụ dãy số: \({u_n} = {{{{(-1)}^n}} \over n}\)có \(\lim {{{{( - 1)}^n}} \over n} = 0\)
Ta có: \({u_1} = - 1 < {u_2} = {1 \over 2},{u_2} = {1 \over 2} > {u_3} = - {1 \over 3}\) nên dãy không tăng cũng không giảm.
- Câu B sai
“Nếu \((u_n)\) là dãy số tăng thì \(\lim(u_n) = + ∞\)” là mệnh đề sai
Ví dụ dãy số \((u_n)\) với \({u_n} = 1 - {1 \over n}\)
Xét \({u_{n + 1}} - {u_n} = (1 - {1 \over {n + 1}}) - (1 - {1 \over n}) = {1 \over n} - {1 \over {n + 1}} = {1 \over {n(n + 1)}} > 0\)nên \((u_n)\) là dãy số tăng. \({{\mathop{\rm limu}\nolimits} _n} = \lim (1 - {1 \over n}) = 1\)
- Câu C sai
Ví dụ hai dãy số \({u_n} = {{{n^2}} \over {n + 2}},{v_n} = n + 1\)
- \({{\mathop{\rm limu}\nolimits} _n} = \lim {{{n^2}} \over {n + 2}} = \lim {{{n^2}} \over {{n^2}({1 \over n} + {1 \over {{n^2}}})}} = \lim {1 \over {{1 \over n} + {2 \over {n2}}}} = + \infty \)
- \(\lim {v_n} = \lim (n + 1) = + \infty \)
- \( \lim ({u_n} - {v_n}) = \lim \left[ {{{{n^2}} \over {n + 2}} - (n + 1)} \right] = \lim {{ - 3n - 2} \over {n + 2}}\)
\(=\lim {{n( - 3 - {2 \over n})} \over {n(1 + {2 \over n})}} = \lim {{ - 3 - {2 \over n}} \over {1 + {2 \over n}}} = - 3 \ne 0\)
- Câu D đúng vì \(\lim q^n= 0\) khi \(|q| <1\).
Do đó: \(-1 < a < 0\) thì \(\lim q^n= 0\)
Vậy chọn đáp án D.