Giải Câu 7 Bài 3: Đường thẳng vuông góc với mặt phẳng

Câu 7: Trang 105 - SGK Hình học 11

Cho tứ diện \(SABC\) có cạnh \(SA\) vuông góc với mặt phẳng \((ABC)\) và có tam giác \(ABC\) vuông tại \(B\). Trong mặt phẳng \((SAB)\) kẻ từ \(AM\) vuông góc với \(SB\) tại \(M\). Trên cạnh \(SC\) lấy điểm \(N\) sao cho \(\frac{SM}{SB}=\frac{SN}{SC}.\) Chứng minh rằng:

a) \(BC ⊥ (SAB)\) và \(AM ⊥ (SBC)\);

b) \(SB ⊥ AN\).

Bài Làm:

Giải Câu 7 Bài 3: Đường thẳng vuông góc với mặt phẳng

a) Chứng minh: $BC\perp (SAB)$

  • Theo giả thiết: $SA \perp (ABC)$ mà $BC\subset (ABC)\Rightarrow SA\perp BC$
  • Tam giác ABC vuông tại B nên $AB\perp BC$
  • Ta có: $\left.\begin{matrix} SA& \perp BC \\  AB& \perp BC \\  SA& \cap AB \end{matrix}\right\}\Rightarrow BC\perp (SAB)$

    Chứng minh: $AM\perp (SBC)$

  • Ta có: $AM\subset (SAB),BC\perp (SAB)\Rightarrow BC\perp AM$
  • Ta có: $\left.\begin{matrix} AM& \perp BC (cmt)\\  AM& \perp SB (gt) \\  BC& \cap SB \end{matrix}\right\}\Rightarrow AM\perp (SBC)$

b) Theo giả thiết: \(AM ⊥ (SBC)\) nên \(AM\bot SB\)        

Giả thiết \(\frac{SM}{SB}=\frac{SN}{SC}\)  nên theo định lí Ta - lét ta có: \(MN// BC\)

Mà \(BC\bot SB\) (do \(BC\bot (SAB)\)) do đó \(MN\bot SB\) 

Ta có: $\left.\begin{matrix} MN& \perp SB (cmt)\\  AM& \perp SB (cmt) \\  AM& \cap MN \end{matrix}\right\}\Rightarrow SB\perp (AMN)\Rightarrow SB\perp MN$

Xem thêm Bài tập & Lời giải

Trong: Giải Bài 3: Đường thẳng vuông góc với mặt phẳng

Câu 1: Trang 104 - SGK Hình học 11

Cho hai đường thẳng phân biệt \(a,b\) và mặt phẳng \((\alpha)\). Các mệnh đề sau đây đúng hay sai?

a) Nếu \(a//(\alpha)\) và \(b\bot (\alpha)\) thì \(a\bot b\)

b) Nếu \(a//(\alpha)\) và \(b\bot a\) thì \(b\bot (\alpha)\)

c) Nếu \(a//(\alpha)\) và \(b// (\alpha)\) thì \(b//a\)

d) Nếu \(a\bot (\alpha)\) và \(b\bot a\) thì \(b// (\alpha)\)

Xem lời giải

Câu 2: Trang 104 - SGK Hình học 11

Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.

a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)

b) Gọi AH là đường cao của tam giác ADI, chứng minh rằng AH vuông góc với mặt phẳng (BCD).

Xem lời giải

Câu 3: Trang 104 - SGK Hình học 11

Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có \(SA=SB=SC=SD\).Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng:

a) Đường thẳng \(SO\) vuông góc với mặt phẳng \((ABCD)\);

b) Đường thẳng \( AC\) vuông góc với mặt phẳng \((SBD)\) và đường thẳng \(BD\) vuông góc với mặt phẳng \(SAC\).

Xem lời giải

Câu 4: Trang 105 - SGK Hình học 11

Cho tứ diện \(OABC\) có ba cạnh \(OA, OB, OC\) đôi một vuông góc. Gọi \(H\) là chân đường vuông góc hạ từ \(O\) tới mặt phẳng \((ABC)\). Chứng minh rằng:

a) H là trực tâm của tam giác \(ABC\);

b) \(\frac{1}{OH^{2}}=\frac{1}{OA^{2}}+\frac{1}{OB^{2}}+\frac{1}{OC^{2}}.\)

Xem lời giải

Câu 5: Trang 105 - SGK Hình học 11

Trên mặt phẳng \((α)\) cho hình bình hành \(ABCD\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\). \(S\) là một điểm nằm ngoài mặt phẳng \((α)\) sao cho \(SA = SC, SB = SD\). Chứng minh rằng:

a) \(SO ⊥ (α)\);

b) Nếu trong mặt phẳng \((SAB)\) kẻ \(SH\) vuông góc với \(AB\) tại \(H\) thì \(AB\) vuông góc mặt phẳng \((SOH)\).

Xem lời giải

Câu 6: Trang 105 - SGK Hình học 11

Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có cạnh \(SA\) vuông góc với mặt phẳng \((ABCD)\). Gọi \(I\) và \(K\) là hai điểm lần lượt lấy trên hai cạnh \(SB\) và \(SD\) sao cho \(\frac{SI}{SB}=\frac{SK}{SD}.\) Chứng minh:

a) \(BD\) vuông góc với \(SC\);

b) \(IK\) vuông góc với mặt phẳng \((SAC)\).

Xem lời giải

Câu 8: Trang 105 - SGK Hình học 11

Cho điểm \(S\) không thuộc cùng mặt phẳng \((α)\) có hình chiếu là điểm \(H\). Với điểm \(M\) bất kì trên \((α)\) và \(M\) không trùng với \(H\), ta gọi \(SM\) là đường xiên và đoạn \(HM\) là hình chiếu của đường xiên đó. Chứng minh rằng:

a) Hai đường thẳng xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;

b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại đường xiên nào có hình chiếu lớn hơn thì lớn hơn.

Xem lời giải

Xem thêm các bài Hình học lớp 11, hay khác:

Để học tốt Hình học lớp 11, loạt bài giải bài tập Hình học lớp 11 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 11.

Lớp 11 | Để học tốt Lớp 11 | Giải bài tập Lớp 11

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 11, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 11 giúp bạn học tốt hơn.