Bài 3 trang 88 Toán 11 tập 2 Cánh diều: Cho tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của tam giác BCD, ACD. Chứng minh rằng:
a) CD ⊥ (ABH)
b) CD ⊥ (ABK)
c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm
Bài Làm:
a) Vì AB ⊥ (BCD)
=> AB ⊥ CD (1)
Có H là trực tâm của tam giác BCD => BH ⊥ CD (2)
Từ (1) và (2) => CD ⊥ (ABH)
b) Vì AB ⊥ (BCD)
=> AB ⊥ CD (1)
Có K là trực tâm của tam giác ACD => AK ⊥ CD (2)
Từ (1) và (2) => CD ⊥ (ABK)