Lời giải bài số 7, 9, 21 đề thi thử THPT Quốc gia môn toán năm 2017 của Sở Giáo dục và đào tạo tỉnh Hưng Yên

Bài Làm:

Câu 7: Trong không gian với hệ trục tọa độ 0xyz, cho mặt phẳng (P): $2x-y-2z+1=0$ và ba điểm $A(1,-2,0), B(1,0,-1), C(0,0,-2)$. Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng (P) và tiếp xúc với ba đường thẳng AB, AC, BC?

A. 1 mặt cầu.

B. Vô số mặt cầu.

C. 4 mặt cầu.

D. 2 mặt cầu.

Giải: Đáp án C

Phương trình mặt phẳng (ABC): 2x-y-2z-4=0

Giả sử mặt cầu cần tìm có tâm I, bán kính R.

Gọi H, K, T, J lần lượt là hình chiếu của I lên AB, AC, BC, (ABC).

Theo tính chất tiếp xúc, ta có R=IH=IK=IT.

Suy ra 3 tam giác vuông $\Delta IJH=\Delta IJK=\Delta IJT (c-g-c)$ do đó JH=JK=JT suy ra J là tâm đường tròn nội tiếp hoặc bàng tiếp tam giác ABC. Vậy có 4 điểm J như vậy và ta sẽ có 4 điểm I tương ứng là hình chiếu của I lên (P). Tức là có 4 mặt cầu thỏa mãn.

Câu 9: Cho hình phẳng (H) gồm nửa hình tròn đường kính AB và tam giác đều ABC như hình vẽ. Gọi $\Delta$ là đường thẳng qua C và song song với AB. Biết $AB=2 \sqrt{3} cm$. Tính thể tích khối tròn xoay tạo bởi hình (H) và trục $\Delta$.

A. $V=8 \sqrt{3}\pi +9 \pi^{2} cm^{3}$.

B. $V=8 \sqrt{3}\pi +\frac{9 \pi^{2}}{2} cm^{3}$.

C. $V=16 \sqrt{3}\pi +9 \pi^{2} cm^{3}$.

D. $V=16 \sqrt{3}\pi +\frac{27 \pi^{2}}{2} cm^{3}$.

Giải: Đáp án C

Chọn $C\equiv 0, \Delta \equiv 0x$, khi đó ta có tọa độ $A(-\sqrt{3},3), B(\sqrt{3},3)$ và phương trình đường tròn đường kính AB là $x^{2}+(y-3)^{2}=3$ và AC: $y=-\sqrt{3}x$, AB: $y=\sqrt{3}x$.

Phần phía trên của nửa đường tròn có phương trình $y=3+\sqrt{3-x^{2}}.$

Vì tính đối xứng của hình vẽ nên $V=2 \pi \int_{-\sqrt{3}}^{0} |(3+\sqrt{3-x^{2}})^{2}-(-\sqrt{3}x)^{2}|dx=16 \sqrt{3} \pi +9 \pi^{2}.

Câu 21: Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có đồ thị của hàm số $y=f'(x)$ như hình vẽ

Chọn khẳng định đúng

A. $f(c)>f(b)>f(a)$.

B. $f(b)>f(c)>f(a)$.

C. $f(b)>f(a)>f(c)$.

D. $f(c)>f(a)>f(b)$. 

Giải: Đáp án B

Chú ý theo định nghĩa tích phân và dựa vào đồ thị của hàm số, ta có diện tích của các hình phẳng:

$S_{1}=\int_{a}^{b}|f'(x)|dx=\int_{a}^{b}f'(x)dx=f(b)-f(a);$

$S_{2}=\int_{b}^{c}|f'(x)|dx=\int_{b}^{c}-f'(x)dx=f(b)-f(c);$

$S_{1}>S_{2}>0\Rightarrow f(b)>f(c)>f(a)$.

Xem thêm các bài Đề ôn thi Toán 12, hay khác:

Dưới đây là danh sách Đề ôn thi Toán 12 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 12.

1. Đề và đáp án môn Toán kì thi THPTQG năm 2020

2. Đề và đáp án môn Toán kì thi THPTQG năm 2019

3. Đề luyện thi môn Toán mới nhất năm 2018

4. Đề luyện thi môn Toán những năm trước

5. Đề và đáp án môn Toán kì thi THPTQG năm 2017

Lớp 12 | Để học tốt Lớp 12 | Giải bài tập Lớp 12

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 12, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 12 giúp bạn học tốt hơn.