Câu 1: Trang 122 - SGK Hình học 11
Trong các mệnh đề sau đây, mệnh đề nào là đúng?
(A) Từ \(\overrightarrow {AB} = 3\overrightarrow {AC} \) ta suy ra \(\overrightarrow {BA} = - 3\overrightarrow {CA} \)
(B) Từ \(\overrightarrow {AB} = - 3\overrightarrow {AC} \) ta suy ra \(\overrightarrow {CB} = 2\overrightarrow {AC} \)
(C) Vì \(\overrightarrow {AB} = - 2\overrightarrow {AC} + 5\overrightarrow {AD} \) nên bốn điểm \(A, B, C\) và \(D\) cùng thuộc một mặt phẳng
(D) Nếu \(\overrightarrow {AB} = - {1 \over 2}\overrightarrow {BC} \) thì \(B\) là trung điểm của đoạn \(AC\)
Bài Làm:
a) Sai
Vì: \(\left\{ \matrix{\overrightarrow {AB} = - \overrightarrow {BA} \hfill \cr \overrightarrow {AC} = - \overrightarrow {CA} \hfill \cr} \right.\)
nên từ:
\(\overrightarrow {AB} = 3\overrightarrow {AC} \) ta suy ra \(\overrightarrow {BA} = 3\overrightarrow {CA} \)
b) Sai
Vì:
\(\overrightarrow {AB} = - 3\overrightarrow {AC} \Rightarrow \overrightarrow {AC} + \overrightarrow {CB} = - 4\overrightarrow {AC} \Rightarrow \overrightarrow {CB} = - 4\overrightarrow {AC} \)
c) Đúng
vì: \(\overrightarrow {AB} = - 2\overrightarrow {AC} + 5\overrightarrow {AD} \): Đẳng thức nàu chứng tỏ ba vecto \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) đồng phẳng, tức là 4 điểm \(A, B, C, D\) cùng nằm trong một mặt phẳng.
d) Sai
Vì: \(\overrightarrow {AB} = - {1 \over 2}\overrightarrow {BC} \Rightarrow \overrightarrow {BA} = {1 \over 2}BC\)
Điều này chứng tỏ hai vecto \(\overrightarrow {BA} ,\overrightarrow {BC} \) cùng phương, do đó điểm B nằm ngoài đoạn thẳng \(AC\), \(B\) không là trung điểm của \(AC\)
Kết quả: trong bốn mệnh đề trên, chỉ có c) đúng.