Lý thuyết trọng tâm toán 7 cánh diều bài 6: Dãy số bằng nhau

Tổng hợp kiến thức trọng tâm toán 7 cánh diều bài 6: Dãy số bằng nhau. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo

I. KHÁI NIỆM 

HĐ1:

Vì 4.12 = 6.8 nên $\frac{4}{6}=\frac{8}{12}$

Vì 8.(-15)=12.(-10) nên $\frac{8}{12}=\frac{-10}{-15}$

Vì 4.(-15) =6.(-10)  nên $\frac{4}{6}=\frac{-10}{-15}$

Kết luận: Những tỉ số bằng nhau và được viết nối với nhau bởi các dấu đẳng thức tạo thành dãy tỉ số bằng nhau.

Chú ý: 

  • Với dãy tỉ số bằng nhau $\frac{a}{b}=\frac{c}{d}=\frac{e}{g}$, ta cũng viết a : b = c : d = e : g.

  • Khi có dãy tỉ số bằng nhau $\frac{a}{b}=\frac{c}{d}=\frac{e}{g}$ (các số a, b, c, d, e, g đều khác 0), ta nói các số a, c, e tỉ lệ với các số b, d, g và viết là a:c:e = b:d:g.

Ví dụ 1: (SGK – tr55)

Luyện tập 1: 

Ta có: $\frac{8}{32}=\frac{8 : 8}{32 : 8}=\frac{1}{4}$

          $\frac{-9}{-36}=\frac{(-9):(-9)}{(-36):(-9)}=\frac{1}{4}$

Như vậy: $\frac{1}{4}= \frac{8}{32} = \frac{-9}{-36}$

Ví dụ 2: (SGK – tr56)

II. TÍNH CHẤT 

HĐ2: 

a) Ta có:

$\frac{6}{10}=\frac{6:2}{10:2}=\frac{3}{5}$

$\frac{9}{15}=\frac{9:3}{15:3}=\frac{3}{5}$

$\frac{6+9}{10+15}=\frac{15}{25}=\frac{15:5}{25:5}=\frac{3}{5}$

$\frac{6-9}{10-15}=\frac{-3}{-5}=\frac{3}{5}$

=> $\frac{6+9}{10+15}=\frac{6-9}{10-15}=\frac{6}{10}=\frac{9}{15}$

b) Vì: $k=\frac{a}{b}=>a=k.b$; $k=\frac{c}{d}=>c=k.d$

Từ đó ta có:

$\frac{a+c}{b+d}=\frac{k.b+k.d}{b+d}=\frac{k.(b+d)}{b+d}=k$

$\frac{a-c}{b-d}=\frac{k.b-k.d}{b-d}=\frac{k.(b-d)}{b-d}=k$

=> $\frac{a+c}{b+d}=\frac{a-c}{b-d}=\frac{a}{b}=\frac{c}{d}(=k)$

Kết luận:

Từ tỉ lệ thức $\frac{a}{b}=\frac{c}{d}$, ta suy ra 

$\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}$ (b ≠ d và b ≠ -d)

Nhận xét: Tính chất trên còn được mở rộng cho dãy tỉ số bằng nhau. Chẳng hạn, từ dãy tỉ số bằng nhau $\frac{a}{b}=\frac{c}{d}=\frac{e}{g}$, ta suy ra:

$\frac{a}{b}=\frac{c}{d}=\frac{e}{g}=\frac{a+c+e}{b+d+g}=\frac{a-c-e}{b-d-g}$

(giả thiết các tỉ số đều có nghĩa).

Ví dụ 3: (SGK – tr56)

Ví dụ 4: (SGK – tr57)

Luyện tập 2:

Vì $x : 1,2 = y : 0,4$ => $\frac{x}{1,2}=\frac{y}{0,4}$

Theo tính chất của dãy tỉ số bằng nhau, ta có:

$\frac{x}{1,2}=\frac{y}{0,4}$

$=\frac{x - y}{1,2-0,4}=\frac{2}{0,8}=2,5$

=> Như vậy: $x=1,2.2,5=3$; $y=0,4.2,5=1$

Luyện tập 3:

Vì x; y; z tỉ lệ với 2; 3; 4 nên ta có: $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$

Theo tính chất của dãy tỉ số bằng nhau, ta có:

$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y-z}{2-3-4}=\frac{2}{-5}=\frac{-2}{5}$

=> Như vậy: $x=2.\frac{-2}{5}=\frac{-4}{5}$; $y=3.\frac{-2}{5}=\frac{-6}{5}$; $z=4.\frac{-2}{5}=\frac{-8}{5}$

III. ỨNG DỤNG 

Ví dụ 5: (SGK – 57)

Ví dụ 6: (SGK – 57)

Luyện tập 4.

Thể tích bể bơi dạng hình hộp chữ nhật là: V = 12 . 10 . 1,2 = 144 (m$^{3}$)

Gọi lượng nước mà mỗi máy cần bơm lần lượt là: $x; y; z$ (m$^{3}$) ($x, y, z > 0$) thì tổng lượng nước 3 máy cần bơm là: $x + y + z = 144$

Vì lượng nước mà ba máy bơm được tỉ lệ với 3 số 7; 8; 9 nên $\frac{x}{7}=\frac{y}{8}=\frac{z}{9}$

Theo tính chất của dãy tỉ số bằng nhau, ta có: 

$\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=\frac{x+y+z}{7+8+9}=\frac{144}{4}=6$

=> Kết luận: $x = 7.6=42$; $y= 8.6 = 48$; $z= 9.6 = 54$

Xem thêm các bài Giải toán 7 tập 1 cánh diều, hay khác:

Xem thêm các bài Giải toán 7 tập 1 cánh diều được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 7 giúp bạn học tốt hơn.

Lớp 7 | Để học tốt Lớp 7 | Giải bài tập Lớp 7

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 7, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 7 giúp bạn học tốt hơn.