Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

Giải bài 2: Đường kính và dây cung của đường tròn - Sách phát triển năng lực trong môn toán 9 tập 1 trang 95. Phần dưới sẽ hướng dẫn trả lời và giải đáp các câu hỏi trong bài học.

1. Xét đường tròn tâm O đường kính MN = 4cm, vẽ ba dây cung bất kì của đường tròn (O) mà không là đường kính của đường tròn lên hình 2.1.

Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

Sử dụng thước kẻ có chia vạch đo độ dài ba dây cung đó và so sánh với MN. Từ đó em có rút ra nhận xét gì?

Hướng dẫn:

  • Vẽ ba dây cung: AB; IK; PQ

Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

  • So sánh độ dài của AB, LK, PQ với MN:

AB < MN; IK < MN; PQ < MN

  • Nhận xét:

Trong một đường tròn, đường kính là dây cung lớn nhất.

Cho đường tròn (O; R) với AB là một dây bất  kì của đường tròn.. Chứng minh nhận xét trên bằng cách xét hai trường hợp dưới đây:

Trường hợp 1: Dây AB là đường kính

Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

  • AB = 2R

Trường hợp 2: Dây AB là đường kính

Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

Xét tam giác ABC ta có:

AB < OB + OA

=> AB < 2R

2. Để thực hiện hoạt động này cần chuẩn bị compa, kéo và giấy.

Bước 1: Sử dụng compa vẽ một đường tròn lớn trên một tờ giấy và cắt rời hình tròn tương ứng Bước 2: Gấp một phần của hình tròn sao cho nếp gấp đó không đi qua tâm và mở ra đánh dấu nếp gấp ta được một dây cung CD của đường tròn Bước 3: Gấp đôi hình tròn sao cho hai điểm C, D trùng nhau và mở  hình tròn ra. Nếp gấp đôi chính là đường kính AB của hình tròn.
Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

a, Nhận xét vị trí giao điểm I của dây cung CD với đường kính AB cắt dây cung đó.

b, Sử dụng thước đo độ và cho biết số đo của góc tạo bởi đường kính AB và dây cung CD. Từ đó em rút ra nhận xét gì?

c, Chỉ ra một trường hợp mà đường kính đi qua trung điểm của một dây nhưng không vuông góc với dây ấy.

Hướng dẫn:

a, I là trung điểm của CD

b, Góc tạo bởi đường kính AB với dây cung CD bằng 90$^{0}$.

Nhận xét: Đường kính đi qua trung điểm của một dây (không đi qua tâm) thì vuông góc với dây đó.

c, Trường hợp: Dây cung đó đi qua tâm O tạo với đường kính một góc nhỏ hơn 90$^{0}$

Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

3. Từ hoạt động trên ta cũng có thể rút ra nhận xét sau đây:

  • Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Xét đường tròn (O) có đường kính AB vuông góc với dây CD. Em hãy chứng minh nhận xét trên bằng cách xét hai trường hợp sau đây:

Trường hợp 1: Dây CD đi qua tâm O

Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

  • CD là đường kính của đường tròn => OC = OD

=> O là trung điểm của CD

Trường hợp 2: Dây CD không đi qua tâm O

Giải phát triển năng lực toán 9 bài 2: Đường kính và dây cung của đường tròn

  • Xét tam giác OCD có OC = OD => Tam giác OCD cân tại O
  • OB vuông góc với CD => OB là đường cao của tam giác OCD
  • Mà tam giác OCD cân tại O => OB cũng là đường trung tuyến của tam giác OCD

=> OB đi qua trung điểm của CD

Bài tập & Lời giải

1. Cho đường tròn (Q). Tìm x trong những trường hợp dưới đây (Hình 2.5):

Giải câu 1 trang 97 sách phát triển năng lực toán 9 tập 1

Xem lời giải

2. Cho tam giác ABC nhọn nội tiếp đường tròn (O). M là điểm bất kì thuộc cung BC không chứa A. Gọi D, E theo thứ tự là các điểm đối xưng với M qua AB, AC (hình 2.6).

Giải câu 2 trang 97 sách phát triển năng lực toán 9 tập 1

a, Chứng minh rằng tam giác ADM và tam giác AME là các tam giác cân.

b, Chứng minh rằng $\widehat{DAE}=2\widehat{BAC}$

c, Gọi H là hình chiếu của A trên DE. Đặt $\widehat{HAE}=\alpha $. Viết biểu thức thể hiện mối liên hệ giữa $\alpha $, AE và DE.

d, Tìm vị trí của M trên cung BC để DE có độ dài lớn nhất.

Xem lời giải

3. Hai bạn Hà và Châu viết kết luận về các dây cung của đường tròn (F) vào các tờ giấy dưới đây. Em hãy cho biết bạn nào viết đúng. Giải thích.

Hình vẽChâu
Giải câu 3 trang 97 sách phát triển năng lực toán 9 tập 1Vì DG $\perp $ BC nên DG là đường trung trực của BCTuy DG $\perp $ BC, nhưng DG không là đường trung trực của BC vì DG không là đường kính.

Xem lời giải

4. Trong một bản tin thời sự có phát thông tin về một vụ tai nạn giao thông trên núi. Theo lời nhân chứng kể lại chiếc xe ô tô đã di chuyển với tốc độ rất lớn. Khi gặp khúc cua, chiếc xe đã phanh gấp và bị đâm vào vách núi. Dấu vết của bánh xe hằn lên trên đường thành một hình vòng cung như hình 2.8. Em hãy thực hiện các yêu cầu dưới đây để tìm vận tốc tối đa của chiếc xe lúc đó nhé.

Giải câu 4 trang 98 sách phát triển năng lực toán 9 tập 1

a, Tính bán kính r của cung tròn.

b, Biết rằng $S=3,16\sqrt{f.r}$ là công thức tính vận tốc tối đa của chiếc xe (m/s), trong đó r là bán kính của cung tròn (m) và f là hệ số ma sát của mặt đường. Giả sử f = 0,7, hãy tính vận tốc tối đa của chiếc xe khi xảy ra tai nạn theo đơn vị km/h.

Xem lời giải

5. Cho nửa đường tròn tâm O đường kính AB, dây CD khác AB. Gọi I là hình chiếu của O trên dây CD.

Giải câu 5 trang 98 sách phát triển năng lực toán 9 tập 1

a, Chứng minh rằng I là trung điểm của CD

b, Gọi H, K theo thứ tự là chân các đường vuông góc kẻ từ A, B đến CD. Chứng minh rằng I là trung điểm của HK.

c, Gọi T là hình chiếu của I trên AB. Chứng minh rằng SACB + SADB = IT.AB

d, Tìm vị trí của dây CD để diện tích tứ giác AHKB là lớn nhất.

Xem lời giải

Xem thêm các bài Bài tập phát triển năng lực toán 9, hay khác:

Để học tốt Bài tập phát triển năng lực toán 9, loạt bài giải bài tập Bài tập phát triển năng lực toán 9 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.