Giải Câu 62 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

Câu 62: Trang 91 - SGK Toán 9 tập 2

a) Vẽ tam giác \(ABC\) cạnh \(a = 3cm\).

b) Vẽ đường tròn \((O;R)\) ngoại tiếp tam giác đều \(ABC\). Tính \(R\).

c) Vẽ đường tròn \((O;r)\) nội tiếp tam giác đều \(ABC\). Tính \(r\).

d) Vẽ tiếp tam giác đều \(IJK\) ngoại tiếp đường tròn \((O;R)\).

Bài Làm:

Giải Câu 62 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

a) Vẽ tam giác đều \(ABC\) có cạnh bằng \(3cm\) (dùng thước có chia khoảng và compa)

b) Tâm \(O\) của đường tròn ngoại tiếp tam giác đều \(ABC\) là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều \(ABC\)).

Ta có:  \(R= OA =\) \(\frac{2}{3}\)\(AA'\) = \(\frac{2}{3}\). \(\frac{AB\sqrt{3}}{2}\) = \(\frac{2}{3}\) . \(\frac{3\sqrt{3}}{2}\) = \(\sqrt3 (cm)\).

c) Đường tròn nội tiếp \((O;r)\) tiếp xúc ba cạnh của tam giác đều \(ABC\) tại các trung điểm \(A', B', C'\) của các cạnh.

          \(r = OA' = \)\(\frac{1}{3}\)\( AA'\) =\(\frac{1}{3}\) \(\frac{3\sqrt{3}}{2}\) = \(\frac{\sqrt{3}}{2}(cm)\)

d) Vẽ các tiếp tuyến với đường tròn \((O;R)\) tại \(A,B,C\). Ba tiếp tuyến này cắt nhau tại \(I, J, K\). Ta có \(∆IJK\) là tam giác đều ngoại tiếp \((O;R)\).

Xem thêm Bài tập & Lời giải

Trong: Giải Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp sgk Toán 9 tập 2 Trang 90 92

Câu 61: Trang 91 - SGK Toán 9 tập 2

a) Vẽ đường tròn tâm \(O\), bán kính \(2cm\).

b) Vẽ hình vuông nội tiếp đường tròn \((O)\) ở câu a)

c) Tính bán kính \(r\) của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn \((O;r)\).

Xem lời giải

Câu 63: Trang 92 - SGK Toán 9 tập 2

Vẽ các hình lục giác đều, hình vuông, hình tam giác đều cùng nội tiếp đường tròn \((O;R)\) rồi tính cạnh của các hình đó theo \(R\).

Xem lời giải

Câu 64: Trang 92 - SGK Toán 9 tập 2

Trên đường tròn bán kính \(R\) lần lượt đặt theo cùng một chiều, kể từ điểm \(A\), ba cung \(\overparen{AB}\), \(\overparen{BC}\), \(\overparen{CD}\) sao cho: \(sđ\overparen{AB}\)=\(60^0\), \(sđ\overparen{BC}\)=\(90^0\), \(sđ\overparen{CD}\)=\(120^0\)

a) Tứ giác \(ABCD\) là hình gì?

b) Chứng minh hai đường chéo của tứ giác \(ABCD\) vuông góc với nhau.

c) Tính độ dài các cạnh của tứ giác \(ABCD\) theo \(R\).

Xem lời giải

Xem thêm các bài Toán 9 tập 2, hay khác:

Để học tốt Toán 9 tập 2, loạt bài giải bài tập Toán 9 tập 2 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

PHẦN ĐẠI SỐ

CHƯƠNG 3: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

CHƯƠNG 4: HÀM SỐ Y= AX2 (A#0) - PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

PHẦN HÌNH HỌC

CHƯƠNG 3: GÓC VỚI ĐƯỜNG TRÒN

CHƯƠNG 4: HÌNH TRỤ - HÌNH NÓN - HÌNH CẦU

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.