Bài 5 trang 100 Toán 11 tập 2 Cánh diều: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:
a) SM ⊥ (ABCD)
b) AD ⊥ (SAB)
c) (SAD) ⊥ (SBC)
Bài Làm:
a) Có (SAB) ⊥ (ABCD)
SM ⊥ (ABCD)
b) Có ABCD là hình chữ nhật
=> AD ⊥ AB
Có SM ⊥ (ABCD) => AD ⊥ SM
=> AD ⊥ (SAB)
c) - Có SA ⊥ SB (vì SAB vuông cân tại S)
SA ⊥ BC (vì SA ⊥ (ABCD) )
=> SA ⊥ ( SBC)
=> (SAD) ⊥ (SBC)