Giải Câu 3 Bài 1: Phương trình đường thẳng

Câu 3: Trang 80 - SGK Hình học 10

Cho tam giác \(ABC\), biết \(A(1; 4), B(3; -1)\) và \(C(6; 2)\)

a) Lập phương trình tổng quát của các đường thẳng \(AB, BC\), và \(CA\)

b) Lập phương trinh tổng quát của đường cao \(AH\) và trung tuyến \(AM\).

Bài Làm:

a) Ta có \(\vec{AB} = (2; -5)\) là một vecto chỉ phương của đường thẳng $AB$.

    => $\vec{n}=(5;2)$ là một vecto pháp tuyến của đường thẳng $AB$

    => Phương trình tổng quát của đường thẳng $AB$ có dạng là: $5x+2y+c=0(1)$

    Vì $A(1;4) \in AB$ nên thay tọa độ điểm $A$ vào (1) ta có: 

     $5.1+2.4+c=0 \Rightarrow c=-13$

     => Phương trình tổng quát của đường thẳng $AB$ là: $5x+2y-13=0$

Tương tự ta có:

phương trình đường thẳng \(BC: x - y -4 = 0\)

phương trình đường thẳng \(CA: 2x + 5y -22 = 0\)

b)

  • Đường cao \(AH\) là đường thẳng đi qua \(A(1; 4)\) và vuông góc với \(BC\).

   \(\Rightarrow \vec{AH}  ⊥ \vec{BC}\) nên đường thẳng $AH$ nhận \(\vec{BC} = (3; 3)\) làm vectơ pháp tuyến và có phương trình tổng quát: $3x+3y+c=0$

    Vì $A(1;4) \in AH$ nên thay tọa độ $A$ vào phương trình $AH$ ta có:

    $3.1+3.4+c=0 \Rightarrow c=-15$

   => Phương trình tổng quát của $AH$ là: $3x+3y-15=0$.

  •    Gọi \(M\) là trung điểm \(BC\) ta có \(M (\frac{9}{2}; \frac{1}{2})\)

Trung tuyến \(AM\) là đường thẳng đi qua hai điểm \(A, M\). 

\(AM:{{x - 1} \over {{9 \over 2} - 1}} = {{y - 4} \over {{1 \over 2}-4}} \Leftrightarrow x + y - 5 = 0\)

Xem thêm Bài tập & Lời giải

Trong: Giải Bài 1: Phương trình đường thẳng sgk Hình học 10 Trang 70

Câu 1: Trang 80 - SGK Hình học 10

Lập phương trình tham số của đường thẳng \(d\) trong mỗi trường hợp sau:

a) $d$ đi qua điểm \(M(2; 1)\) và có vectơ chỉ phương \(\vec{u} = (3;4)\)

b) \(d\) đi qua điểm \(M(-2; 3)\) và có vec tơ pháp tuyến \(\vec{n}= (5; 1)\)

Xem lời giải

Câu 2: Trang 80 - SGK Hình học 10

Lập phương trình tổng quát của đường thẳng \(∆\) trong mỗi trường hợp sau:

a) \(∆\) đi qua điểm \(M (-5; -8)\) và có hệ số góc \(k = -3\)

b) \(∆\) đi qua hai điểm \(A(2; 1)\) và \(B(-4; 5)\)

Xem lời giải

Câu 4: Trang 80 - SGK Hình học 10

Viết phương trình tổng quát của đường thẳng đi qua điểm \(M(4; 0)\) và \(N(0; -1)\)

Xem lời giải

Câu 5: Trang 80 - SGK Hình học 10

Xét vị trí tương đối của các cặp đường thẳng sau đây:

a) \(d_1: 4x - 10y + 1 = 0 \,\ ; \,\ d_2 : x + y + 2 = 0\)

b) \(d_1  :12x - 6y + 10 = 0 \,\ ; \,\ d_2:\left\{\begin{matrix} x= 5+t& \\ y= 3+2t& \end{matrix}\right.\)

c) \(d_1:8x + 10y - 12 = 0 \,\ ; \,\ d_2  :  \left\{\begin{matrix} x= -6+5t& \\ y= 6-4t& \end{matrix}\right.\)

Xem lời giải

Câu 6: Trang 80 - SGK Hình học 10

Cho đường thẳng $d$ có phương trình tham số: \(\left\{\begin{matrix} x=2+2t& \\ y=3+t& \end{matrix}\right.\).

Tìm điểm $M$ thuộc $d$ và cách điểm $A(0;1)$ một khoảng bằng 5.

Xem lời giải

Câu 7: Trang 81 - SGK Hình học 10

Tìm số đo của góc giữa hai đường thẳng \(d_1\) và \(d_2\) lần lượt có phương trình: \(d_1: 4x - 2y + 6 = 0\) và \(d_2: x - 3y + 1 = 0\)

Xem lời giải

Câu 8: Trang 81 - SGK Hình học 10

Tìm khoảng cách từ điểm đến đường thẳng trong các trường hợp sau:

a) \(A(3; 5)\)    \(∆ : 4x + 3y + 1 = 0\);

b) \(B(1; -2)\)  \( d: 3x - 4y - 26 = 0\);

c) \(C(1; 2)\)   \( m: 3x + 4y - 11 = 0\).

Xem lời giải

Câu 9: Trang 81 - SGK Hình học 10

Tìm bán kính của đường tròn tâm \(C(-2; -2)\) và tiếp xúc với đường thẳng

\(∆ : 5x + 12y - 10 = 0 \).

Xem lời giải

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập