Giải bài 2: Tích vô hướng của hai vectơ

Bài học giới thiệu nội dung: Tích vô hướng của hai vectơ. Một kiến thức không quá khó song đòi hỏi các bạn học sinh cần nắm được phương pháp để giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 10, ConKec sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn

A. Tổng hợp kiến thức

1. Định nghĩa

  • Cho hai vectơ $\overrightarrow{a},\overrightarrow{b}$ đều khác $\overrightarrow{0}$. Tích vô hướng của $\overrightarrow{a}$ và $\overrightarrow{b}$ là một số.
  • Ký hiệu: $\overrightarrow{a}.\overrightarrow{b}$
$\overrightarrow{a}.\overrightarrow{b}=\left | \overrightarrow{a} \right |.\left | \overrightarrow{b} \right |\cos (\overrightarrow{a},\overrightarrow{b})$
  • Nếu $\overrightarrow{a}=\overrightarrow{0}$ hoặc $\overrightarrow{b}=\overrightarrow{0}$ thì $\overrightarrow{a}.\overrightarrow{b}=0$

       => $\overrightarrow{a}\perp \overrightarrow{b}$

  • Nếu $\overrightarrow{a}=\overrightarrow{b}$ 

       => $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{a}.\overrightarrow{a}=\overrightarrow{a^{2}}$ 

2. Các tính chất của tích vô hướng 

  • Với ba vectơ $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. ta có:

$\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$

$\overrightarrow{a}.(\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}.\overrightarrow{c}$

$(k\overrightarrow{a}).\overrightarrow{b}=k(\overrightarrow{a}.\overrightarrow{b})=\overrightarrow{a}.(k\overrightarrow{b})$

$\overrightarrow{a^{2}}\geq 0,\overrightarrow{a^{2}}=0 <=>\overrightarrow{a}=\overrightarrow{0}$

3. Ứng dụng

Độ dài vectơ

$\left | \overrightarrow{a} \right |=\sqrt{a_{1}^{2}+a_{2}^{2}}$

Góc giữa hai vectơ

$\cos (\overrightarrow{a},\overrightarrow{b})=\frac{\overrightarrow{a}.\overrightarrow{b}}{\left | \overrightarrow{a} \right |.\left | \overrightarrow{b} \right |}=\frac{a_{1}b_{1}+a_{2}b_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}.\sqrt{b_{1}^{2}+b_{2}^{2}}}$

Khoảng cách giữa hai điểm

  • Cho hai điểm $A(x_{A},y_{A})$ và $B(x_{B},y_{B})$, ta có:
$AB=\sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}$

B. Bài tập & Lời giải

Câu 1: Trang 45 - sgk hình học 10

Cho tam giác vuông cân ABC có AB = AC = a. Tính các tích vô hướng:

$\overrightarrow{AB}.\overrightarrow{AC}$

$\overrightarrow{AC}.\overrightarrow{CB}$

Xem lời giải

Câu 2: Trang 45 - sgk hình học 10

Cho ba điểm O, A, B thẳng hàng và biết OA = a, OB = b. Tính tích vô hướng $\overrightarrow{OA}.\overrightarrow{OB}$ trong hai trường hợp:

a) Điểm O nằm ngoài đoạn AB.

b) Điểm O nằm trong đoạn AB.

Xem lời giải

Câu 3: Trang 45 - sgk hình học 10

Cho nửa hình tròn tâm O có đường kính AB=2R. Gọi M và N là hai điểm thuộc nửa đường tròn sao cho hai dây cung AM và BN cắt nhau tại I.

a) Chứng minh: $\overrightarrow{AI}.\overrightarrow{AM}=\overrightarrow{AI}. \overrightarrow{AB}$ và $\overrightarrow{BI}.\overrightarrow{BN}=\overrightarrow{BI}. \overrightarrow{BA}$.

b) Hãy dùng kết quả câu a) để tính $\overrightarrow{AI}.\overrightarrow{AM}+\overrightarrow{BI}. \overrightarrow{BN}$ theo R.

Xem lời giải

Câu 4: Trang 45 - sgk hình học 10

Trên mặt phẳng Oxy, cho hai điểm A(1; 3), B(1; 2).

a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA = DB.

b) Tính chu vi tam giác OAB.

c) Chứng tỏ OA vuông góc với AB và từ đó tính diện tích tam giác OAB.

Xem lời giải

Câu 5: Trang 45 - sgk hình học 10

Trên mặt phẳng Oxy hãy tính góc giữa hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ trong các trường hợp sau:

a) $\overrightarrow{a}=(2;-3)$ và $\overrightarrow{b}=(6;4)$

b) $\overrightarrow{a}=(3;2)$ và $\overrightarrow{a}=(5;-1)$

c) $\overrightarrow{a}=(-2;-2\sqrt{3})$ và $\overrightarrow{a}=(3;\sqrt{3})$

Xem lời giải

Câu 6: Trang 45 - sgk hình học 10

Trên mặt phẳng tọa độ Oxy cho bốn điểm: A(7; -3), B(8; 4), C(1; 5), D(0; –2). Chứng minh rằng tứ giác ABCD là hình vuông.

Xem lời giải

Câu 7: Trang 45 - sgk hình học 10

Trên mặt phẳng Oxy cho điểm A(-2; 1). Gọi B là điểm đối xứng với điểm A qua gốc tọa độ O. Tìm tọa độ của điểm C có tung độ bằng 2 sao cho tam giác vuông ở C.

Xem lời giải

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập