Giải bài 2: Tổng và hiệu của hai vectơ

Bài học giới thiệu nội dung: Tổng và hiệu của hai vectơ. Một kiến thức không quá khó song đòi hỏi các bạn học sinh cần nắm được phương pháp để giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 10, ConKec sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn

A. Tổng hợp kiến thức

I. Tổng hai vec tơ

  • Cho hai vec tơ $\overrightarrow{a} ,\overrightarrow{b}$.
  • Điểm A tùy ý, vẽ $\overrightarrow{AB} =\overrightarrow{a}$ ; $\overrightarrow{BC} =\overrightarrow{b}$

           => $\overrightarrow{AC} =\overrightarrow{AB} + \overrightarrow{BC}=\overrightarrow{a} + \overrightarrow{b}$

II. Quy tắc hình bình hành

  • Nếu ABCD là hình bình hành <=> $\overrightarrow{AB} + \overrightarrow{AD}=\overrightarrow{AC}$

Tính chất 

  • Cho ba vec tơ $\overrightarrow{a} ,\overrightarrow{b},\overrightarrow{c}$, ta có:

$\overrightarrow{a} +\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}$

$(\overrightarrow{a} +\overrightarrow{b})+\overrightarrow{c}=\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c})$

$\overrightarrow{a} +\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{a}=\overrightarrow{a}$

III. Hiệu của hai vec tơ

  • $\overrightarrow{AB}$ có vec tơ đối là $\overrightarrow{BA}$
  • Ký hiệu: 
$-\overrightarrow{AB} =\overrightarrow{BA}$
  • Đặc biệt: Vec tơ đối của $\overrightarrow{0}$ là $\overrightarrow{0}$.

Định nghĩa

  • Cho hai vec tơ $\overrightarrow{a}$ và $\overrightarrow{b}$ , hiệu hai vec tơ đó là:
$\overrightarrow{a} +(-\overrightarrow{b})=\overrightarrow{a} -\overrightarrow{b}$.

Lưu ý:

  • Với ba điểm A, B, C tùy ý, ta có:
    • $\overrightarrow{AB} +\overrightarrow{BC}=\overrightarrow{AC}$.
    • $\overrightarrow{AB} -\overrightarrow{AC}=\overrightarrow{CB}$.
  • Nếu $\overrightarrow{IA} +\overrightarrow{IB}=\overrightarrow{0}$ => I là trung điểm của AB.
  • Nếu $\overrightarrow{GA} +\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$ => G là trọng tâm tam giác ABC.

B. Bài tập & Lời giải

Câu 1: Trang 12 - sgk hình học 10

Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho $AM > MB$. Vẽ các vec tơ $\overrightarrow{MA} +\overrightarrow{MB}$ và $\overrightarrow{MA} -\overrightarrow{MB}$.

Xem lời giải

Câu 2: Trang 12 - sgk hình học 10

Cho hình bình hành ABCD và điểm M tùy ý. Chứng minh rằng: $\overrightarrow{MA} +\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}$

Xem lời giải

Câu 3: Trang 12 - sgk hình học 10

Chứng minh rằng đối với tứ giác ABCD bất kỳ ta luôn có:

a) $\overrightarrow{AB} +\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}=\overrightarrow{0}$

b) $\overrightarrow{AB} -\overrightarrow{AD}=\overrightarrow{CB}+\overrightarrow{CD}$

Xem lời giải

Câu 4: Trang 12 - sgk hình học 10

Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành: ABIJ, BCPQ, CARS.

Chứng minh rằng: $\overrightarrow{RJ} +\overrightarrow{IQ}+\overrightarrow{PS}=\overrightarrow{0}$

Xem lời giải

Câu 5: Trang 12 - sgk hình học 10

Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vectơ $\overrightarrow{AB} +\overrightarrow{BC}$ và $\overrightarrow{AB} -\overrightarrow{BC}$.

Xem lời giải

Câu 6: Trang 12 - sgk hình học 10

Cho hình bình hành ABCD có tâm O. Chứng minh rằng:

a) $\overrightarrow{CO}-\overrightarrow{OB}=\overrightarrow{BA}$

b) $\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{DB}$

c) $\overrightarrow{DA}-\overrightarrow{DB}=\overrightarrow{OA}-\overrightarrow{OB}$

d) $\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}$

 

Xem lời giải

Câu 7: Trang 12 - sgk hình học 10

Cho vectơ a, b là hai vectơ khác vectơ 0. Khi nào có đẳng thức:

a) $\left | \overrightarrow{a} +\overrightarrow{b}\right |=\left | \overrightarrow{a} \right |+\left | \overrightarrow{b} \right |$

b) $\left | \overrightarrow{a} +\overrightarrow{b}\right |=\left | \overrightarrow{a}-\overrightarrow{b} \right |$

Xem lời giải

Câu 8: Trang 12 - sgk hình học 10

Cho $\left | \overrightarrow{a} +\overrightarrow{b}\right |= \overrightarrow{0}$.

So sánh độ dài, phương và hướng của hai vectơ a và b.

Xem lời giải

Câu 9: Trang 12 - sgk hình học 10

Chứng minh rằng : $\overrightarrow{AB} =\overrightarrow{CD}$ khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Xem lời giải

Câu 10: Trang 12 - sgk hình học 10

Cho ba lực $\overrightarrow{F_{1}} =\overrightarrow{MA}$ ; $\overrightarrow{F_{2}} =\overrightarrow{MB}$ , $\overrightarrow{F_{3}} =\overrightarrow{BC}$ cùng tác động

vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của hai lực $F_{1}, F_{2}$ đều là 100N và $\widehat{AMB}=60^{\circ}$.

Tìm cường độ và hướng của lực $F_{3}$.

Xem lời giải

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập