Bài tập 5.2 trang 109 sgk Toán 11 tập 1 KNTT: Cho hai dãy số không âm $(u_{n})$ và $(v_{n})$ với $\underset{n\rightarrow +\infty }{lim}u_{n}=2$ và $\underset{n\rightarrow +\infty }{lim}v_{n}=3$
Tìm các giới hạn sau:
a) $\underset{n\rightarrow +\infty }{lim}\frac{u_{n}^{2}}{v_{n}-u_{n}}$
b) $\underset{n\rightarrow +\infty }{lim}\sqrt{u_{n}+2v_{n}}$
Bài Làm:
a) $\underset{n\rightarrow +\infty }{lim}\frac{u_{n}^{2}}{v_{n}-u_{n}}=\frac{(\underset{n\rightarrow +\infty }{lim}u_{n})^{2}}{\underset{n\rightarrow +\infty }{lim}v_{n}-\underset{n\rightarrow +\infty }{lim}u_{n}}=\frac{2^{2}}{3-2}=4$
b) $\underset{n\rightarrow +\infty }{lim}(u_{n}+2v_{n})=\underset{n\rightarrow +\infty }{lim}u_{n}+2\underset{n\rightarrow +\infty }{lim}v_{n}=2+2\times 3=8\Rightarrow \underset{n\rightarrow +\infty }{lim}\sqrt{u_{n}+2v_{n}}=\sqrt{8}$