Giải toán 11 kết nối bài 16 Giới hạn của hàm số

Giải bài 16: Giới hạn của hàm số sách toán 11 tập 1 kết nối tri thức. Phần đáp án chuẩn, hướng dẫn giải chi tiết cho từng bài tập có trong chương trình học của sách giáo khoa. Hi vọng, các em học sinh hiểu và nắm vững kiến thức bài

Bài tập & Lời giải

1. Giới hạn hữu hạn của hàm số tại một điểm 

Hoạt động 1 trang 111 sgk Toán 11 tập 1 KNTT: Nhận biết khái niệm giới hạn tại một điểm

Cho hàm số $f(x)=\frac{4-x^{2}}{x-2}$

a) Tìm tập xác định của hàm số f(x)

b) Cho dãy số $x_{n}=\frac{2n+1}{n}$. Rút gọn $f(x_{n})$ và tính giới hạn của dãy $(u_{n})$ với $u_{n}=f(x_{n})$

c) Với dãy số $(x_{n})$ bất kì sao cho $x_{n}\neq 2$ và $x_{n}\rightarrow 2$, tính $f(x_{n})$ và tìm $\underset{n\rightarrow +\infty }{lim}f(x_{n})$

Xem lời giải

Luyện tập 1 trang 113 sgk Toán 11 tập 1 KNTT: Tính $\underset{n\rightarrow 1 }{lim}\frac{x-1}{\sqrt{x}-1}$

Xem lời giải

Hoạt động 2 trang 113 sgk Toán 11 tập 1 KNTT: Nhận biết khái niệm giới hạn một bên

Cho hàm số $f(x)=\frac{|x-1|}{x-1}$

a) Cho $x_{n}=\frac{n}{n+1}$ và $x'_{n}=\frac{n+1}{n}$. Tính $y_{n}=f(x_{n})$ và $y'_{n}=f(x'_{n})$

b) Tìm giới hạn của các dãy số $(y_{n})$ và $(y'_{n})$

c) Cho các dãy số $(x_{n})$ và $(x'_{n})$ bất kì sao cho $x_{n}<1<x'_{n}$ và $x_{n}\rightarrow 1,x'_{n}\rightarrow 1$, tính $\underset{n\rightarrow +\infty }{lim}f(x_{n})$ và $\underset{n\rightarrow +\infty }{lim}f(x'_{n})$

Xem lời giải

Luyện tập 2 trang 113 sgk Toán 11 tập 1 KNTT: Cho hàm số $f(x)=\left\{\begin{matrix}-x nếu x<0\\ \sqrt{x}nếu x\geq 0\end{matrix}\right.$

Tính $\underset{x\rightarrow 0^{+}}{lim}f(x), \underset{x\rightarrow 0^{-}}{lim}f(x)$ và $\underset{x\rightarrow 0}{lim}f(x)$

Xem lời giải

2. Giới hạn hữu hạn của hàm số tại vô cực

Hoạt động 3 trang 114 sgk Toán 11 tập 1 KNTT: Nhận biết khái niệm giới hạn tại vô cực

Cho hàm số $f(x)=1+\frac{2}{x-1}$ có đồ thị như Hình 5.4

Giải Hoạt động 3 trang 114 sgk Toán 11 tập 1 Kết nối

Giả sử $(x_{n})$ là dãy số sao cho $x_{n}>1,x_{n}\rightarrow +\infty $. Tính $f(x_{n})$ và tìm $\underset{n\rightarrow +\infty }{lim}f(x_{n})$

Xem lời giải

Luyện tập 3 trang 115 sgk Toán 11 tập 1 KNTT: Tính $\underset{x\rightarrow +\infty }{lim}\frac{\sqrt{x^{2}+2}}{x+1}$

Xem lời giải

Vận dụng trang 115 sgk Toán 11 tập 1 KNTT: Cho tam giác vuông OAB với A = (a;0) và B = (0;1) như Hình 5.5. Đường cao OH có độ dài là h

a) Tính h theo a

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

Giải Vận dụng trang 115 sgk Toán 11 tập 1 Kết nối

Xem lời giải

3. Giới hạn vô cực của hàm số tại một điểm

Hoạt động 4 trang 115 sgk Toán 11 tập 1 KNTT: Nhận biết khái niệm giới hạn vô cực

Xét hàm số $f(x)=\frac{1}{x^{2}}$ có đồ thị như Hình 5.6

Cho $x_{n}=\frac{1}{n}$, chứng tỏ rằng $f(x_{n})\rightarrow +\infty $

Giải Hoạt động 4 trang 115 sgk Toán 11 tập 1 Kết nối

Xem lời giải

Hoạt động 5 trang 116 sgk Toán 11 tập 1 KNTT: Cho hàm số $f(x)=\frac{1}{x-1}$. Với các dãy số $(x_{n})$ và $(x'_{n})$ cho bởi $x_{n}=1+\frac{1}{n},x'_{n}=1-\frac{1}{n}$, tính $\underset{x\rightarrow +\infty }{lim}f(x_{n})$ và $\underset{x\rightarrow +\infty }{lim}f(x'_{n})$

Xem lời giải

Luyện tập 4 trang 116 sgk Toán 11 tập 1 KNTT: Tính các giới hạn

a) $\underset{x\rightarrow  0}{lim}\frac{2}{|x|}$

b) $\underset{x\rightarrow 2^{-} }{lim}\frac{1}{\sqrt{2-x}}$

Xem lời giải

Luyện tập 5 trang 118 sgk Toán 11 tập 1 KNTT: Tính $\underset{x\rightarrow 2^{+}}{lim}\frac{2x-1}{x-2}$ và $\underset{x\rightarrow 2^{-}}{lim}\frac{2x-1}{x-2}$

Xem lời giải

Bài tập

Bài tập 5.7 trang 118 sgk Toán 11 tập 1 KNTT: Cho hai hàm số $f(x)=\frac{x^{2}-1}{x-1}$ và g(x) = x + 1. Khẳng định nào sau đây là đúng?

a) f(x) = g(x)

b) $\underset{x\rightarrow 1}{lim}f(x)=\underset{x\rightarrow 1}{lim}g(x)$

Xem lời giải

Bài tập 5.8 trang 118 sgk Toán 11 tập 1 KNTT: Tính các giới hạn sau:

a) $\underset{x\rightarrow 0}{lim}\frac{(x+2)^{2}-4}{x}$

b) $\underset{x\rightarrow 0}{lim}\frac{\sqrt{x^{2}+9}-3}{x^{2}}$

Xem lời giải

Bài tập 5.9 trang 118 sgk Toán 11 tập 1 KNTT: Cho hàm số $H(t)=\left\{\begin{matrix}0 nếu t<0\\ 1 nếu t\geq 0\end{matrix}\right.$ (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/ mở của dòng điện tại thời điểm t = 0)

Tính $\underset{t\rightarrow 0^{+}}{lim}H(t)$ và $\underset{t\rightarrow 0^{-}}{lim}H(t)$

Xem lời giải

Bài tập 5.10 trang 118 sgk Toán 11 tập 1 KNTT: Tính các giới hạn một bên:

a) $\underset{t\rightarrow 1^{+}}{lim}\frac{x-2}{x-1}$

b) $\underset{t\rightarrow 4^{-}}{lim}\frac{x^{2}-x+1}{4-x}$

Xem lời giải

Bài tập 5.11 trang 118 sgk Toán 11 tập 1 KNTT: Cho hàm số $g(x)=\frac{x^{2}-5x+6}{|x-2|}$ 

Tìm $\underset{t\rightarrow 2^{+}}{lim}g(x)$ và $\underset{t\rightarrow 2^{-}}{lim}g(x)$

Xem lời giải

Bài tập 5.12 trang 118 sgk Toán 11 tập 1 KNTT: Tính các giới hạn sau:

a) $\underset{x\rightarrow +\infty }{lim}\frac{1-2x}{\sqrt{x^{2}+1}}$

b) $\underset{x\rightarrow +\infty }{lim}(\sqrt{x^{2}+x+2}-x)$

Xem lời giải

Bài tập 5.13 trang 118 sgk Toán 11 tập 1 KNTT: Cho hàm số $f(x)=\frac{2}{(x-1)(x-2)}$

Tìm $\underset{x\rightarrow 2^{+} }{lim}f(x)$ và $\underset{x\rightarrow 2^{-} }{lim}f(x)$

Xem lời giải

Xem thêm các bài Giải toán 11 tập 1 kết nối tri thức, hay khác:

Xem thêm các bài Giải toán 11 tập 1 kết nối tri thức được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 11 giúp bạn học tốt hơn.

Lớp 11 | Để học tốt Lớp 11 | Giải bài tập Lớp 11

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 11, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 11 giúp bạn học tốt hơn.