Giải Câu 2 Bài Ôn tập cuối năm

Câu 2: Trang 125 - SGK Hình học 11

Cho tam giác \(ABC\) nội tiếp đường tròn tâm \(O\). Gọi \(G\) và \(H\) tương ứng là trọng tâm và trực tâm của tam giác, các điểm \(A',B',C'\) lần lượt là trung điểm của các cạnh \(BC, CA, AB\).

a) Tìm phép vị tự \(F\) biến \(A, B, C\) tương ứng thành \(A',B',C'\)

b) Chứng minh rằng \(O, G, H\) thẳng hàng.

c) Tìm ảnh của \(O\) qua phép vị tự \(F\)

d) Gọi \(A”, B”, C”\) lần lượt là trung điểm của các đoạn thẳng \(AH, BH, CH\); \(A_1, B_1, C_1\) theo thứ tự là giao điểm thứ hai của các tia \(AH, BH, CH\) với đường tròn \((O)\); \(A_1',B_1',C_1'\) tương ứng là chân các đường cao đi qua \(A, B, C\). Tìm ảnh của \(A, B, C\), \(A_1, B_1, C_1\) qua phép vị tự tâm \(H\) tỉ số \({1 \over 2}\)

e) Chứng minh chín điểm \(A',B',C'\),\(A”, B”, C”\),\(A_1',B_1',C_1'\) cùng thuộc một đường tròn (đường tròn này gọi là đường tròn Ơ-le của tam giác \(ABC\))

Bài Làm:

Giải Câu 2 Bài Ôn tập cuối năm

a) Vì $G$ là trọng tâm $\Delta ABC$ nên ta có:

    \(\eqalign{
& \overrightarrow {GA'} = - {1 \over 2}\overrightarrow {GA} ; \cr 
& \overrightarrow {GB'} = - {1 \over 2}\overrightarrow {GB} ; \cr 
& \overrightarrow {GC'} = - {1 \over 2}\overrightarrow {GC} \cr}\).

    Vậy phép vị tự tâm \(G\) tỉ số \(k =  - {1 \over 2}\) biến \(A, B, C\) thành \(A’, B’, C’\).

b) Vì: \(A’\) là trung điểm của \(BC\) (gt) nên \(OA’ ⊥ BC\) (trong đường tròn (O), đoạn nối tâm với trung điểm dây cung thì vuông góc với dây cung đó)

    Ta lại có \(BC // C’B’\) (định lý Talet trong tam giác ABC)

    nên \(OA’ ⊥ B’C’ ⇒\) Trong tam giác \(A’B’C’\) thì \(OA’\) là đường cao kẻ từ đỉnh \(A’\).

    Tương tự, \(OB’\) là đường cao kẻ từ \(B’\), suy ra \(O\) là trực tâm của \(∆A’B’C’\).

    Lại có: \(H\) là trực tâm của \(∆ABC\) và \(O\) là trực tâm của \(∆A’B’C’\), $\Delta A'B'C'$ là ảnh của $\Delta ABC$ qua phép vị tự tâm $G$, tỉ số $k=\frac{-1}{2}$

    nên \(O\) là ảnh của \(H\) trong phép vị tự tâm \(G\), tỉ số \(k =  - {1 \over 2}\)

    => \(\overrightarrow {GO}  =  - {1 \over 2}\overrightarrow {GH} \) 

     \(⇒\) Ba điểm \(O, G, H\) thẳng hàng

c) Gọi \(O’\) là ảnh của \(O\) trong phép vị tự \({V_{\left( {G; - {1 \over 2}} \right)}}\) ta có:

     \(\eqalign{
& \overrightarrow {GO'} = - {1 \over 2}\overrightarrow {GO} \cr 
& \overrightarrow {GO} = - {1 \over 2}\overrightarrow {GH} \to \overrightarrow {OG} = {1 \over 2}\overrightarrow {GH} \cr 
& \overrightarrow {OG} + \overrightarrow {GO'} = {1 \over 2}\overrightarrow {GH} - {1 \over 2}\overrightarrow {GO} \cr 
& \Rightarrow \overrightarrow {OO'} = {1 \over 2}\left( {\overrightarrow {GH} - \overrightarrow {GO} } \right) \cr 
& \Rightarrow \overrightarrow {OO'} = {1 \over 2}\overrightarrow {OH} \cr} \) 

     Đẳng thức này chứng tỏ điểm \(O’\) là trung điểm của đoạn thẳng \(OH\)

     Vậy ảnh của $O$ qua phép vị tự tâm \(G\), tỉ số \(k =  - {1 \over 2}\) là $O'$ trung điểm của $OH$.

d)

 Giải Câu 2 Bài Ôn tập cuối năm-1

      Vì \(A”, B”, C”\) lần lượt là trung điểm của các đoạn thẳng \(AH, BH, CH\) 

    => \(\eqalign{& \overrightarrow {HA''} = {1 \over 2}\overrightarrow {HA} \cr & \overrightarrow {HB''} = {1 \over 2}\overrightarrow {HB} \cr & \overrightarrow {HC''} = {1 \over 2}\overrightarrow {HC} \cr} \) 

      Vậy \(A”, B”, C”\) là ảnh của các điểm \(A, B, C\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\) (1)

      Ta dễ dàng chứng minh được \(A_1',B_1',C_1'\) theo thứ tự là trung điểm của các đoạn thẳng \(H{A_1},H{B_1},H{C_1}\) nên:

   \(\eqalign{
& \overrightarrow {H{A_1}'} = {1 \over 2}\overrightarrow {H{A_1}} \cr 
& \overrightarrow {H{B_1}'} = {1 \over 2}\overrightarrow {H{B_1}} \cr 
& \overrightarrow {H{C_1}'} = {1 \over 2}\overrightarrow {H{C_1}} \cr} \) 

    Như vậy \(A_1',B_1',C_1'\) theo thứ tự là ảnh của các điểm \(A_1, B_1, C_1\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\) (2)

    Từ (1) (2), ảnh của \(A, B, C\), \(A_1, B_1, C_1\) qua phép vị tự tâm \(H\) tỉ số \({1 \over 2}\) lần lượt là \(A”, B”, C”\),\(A_1',B_1',C_1'\)

e) Gọi \(A_2, B_2, C_2\) theo thứ tự là các điểm xuyên tâm đối của các điểm \(A, B, C\) qua tâm \(O\) của đường tròn.

    Ta chứng minh được tứ giác \(BHCA_2\) là hình bình hành, do đó \(H\) và \(A_2\) đối xứng qua \(A’\), ta có:

    \(\eqalign{
& \overrightarrow {HA'} = {1 \over 2}\overrightarrow {H{A_2}} \cr 
& \overrightarrow {HB'} = {1 \over 2}\overrightarrow {H{B_2}} \cr 
& \overrightarrow {HC'} = {1 \over 2}\overrightarrow {H{C_2}} \cr} \)

    Như vậy, các điểm \(A’, B’, C’\) theo thứ tự là ảnh của các điểm \(A_2, B_2, C_2\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\) (3)

     Từ (1), (2), (3) ta có:

     Chín điểm \(A’, B’,C’,A”, B”,C”\), \(A_1',B_1',C_1'\) theo thứ tự là ảnh của các điểm \(A,B,C,{A_1},{B_1},{C_1},{A_2},{B_2},{C_2}\) trong phép tự vị \({V_{\left( {H;{1 \over 2}} \right)}}\) 

     mà chín điểm \(A,B,C,{A_1},{B_1},{C_1},{A_2},{B_2},{C_2}\) nằm trên đường tròn \((O)\) nên chín điểm \(A,B,C,{A_1},{B_1},{C_1},{A_2},{B_2},{C_2}\) nằm trên đường tròn ảnh của đường tròn \((O)\) trong phép vị tự \({V_{\left( {H;{1 \over 2}} \right)}}\)

Xem thêm Bài tập & Lời giải

Trong: Giải Bài Ôn tập cuối năm

Câu 1: Trang 125 - SGK Hình học 11

Trong mặt phẳng tọa độ \(Oxy\), cho các điểm \(A (1; 1), B(0; 3), C(2; 4)\) .Xác định ảnh của tam giác \(ABC\) qua các phép biến hình sau.

a) Phép tịnh tiến theo vectơ \(\overrightarrow v  = (2; 1)\).

b) Phép đối xứng qua trục \(Ox\)

c) Phép đối xứng qua tâm \(I(2;1)\).

d) Phép quay tâm \(O\) góc \(90^0\).

e) Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục \(Oy\) và phép vị tự tâm \(O\) tỉ số \(k = -2\)

Xem lời giải

Câu 3: Trang 125 - SGK Hình học 11

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AB\) là đáy lớn. Gọi \(M\) là trung điểm của đoạn \(AB\), \(E\) là giao điểm của hai cạnh của hình thang \(ABCD\) và \(G\) là trọng tâm của tam giác \(ECD\).

a) Chứng minh rằng bốn điểm \(S, E, M, G\) cùng thuộc một mặt phẳng \((α)\) và mặt phẳng này cắt cả hai mặt phẳng \((SAC)\) và \((SBD)\) theo cùng một giao tuyến \(d\).

b) Xác định giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\).

c) Lấy một điểm \(K\) trên đoạn \(SE\) và gọi \(C'= SC ∩KB, D'=SD ∩ KA\). Chứng minh rằng hai giao điểm của \(AC'\) và \(BD'\) thuộc đường thẳng \(d\) nói trên.

Xem lời giải

Câu 4: Trang 126 - SGK Hình học 11

Cho hình lăng trụ tứ giác \(ABCD.A’B’C’D’\) có \(E, F, M\) và \(N\) lần lượt là trung điểm của \(AC, BD, AC’\) và \(BD’\). Chứng minh \(MN = EF\).

Xem lời giải

Câu 5: Trang 126 - SGK Hình học 11

Cho hình lập phương \(ABCD.A'B'C'D'\) có \(E\) và \(F\) lần lượt là trung điểm của các cạnh \(AB\) và \(DD'\). Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng \((EFB)\), \((EFC)\), \((EFC')\) và \((EFK)\) với \(K\) là trung điểm của cạnh \(B'C'\)

Xem lời giải

Câu 6: Trang 126 - SGK Hình học 11

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng \(a\).

a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.

b)Tính khoảng cách của hai đường thẳng BD' và B'C

Xem lời giải

Câu 7: Trang 126 - SGK Hình học 11

Cho hình thang \(ABCD\) vuông tại \(A\) và \(B\), có \(AD = 2a, AB = BC = a\). Trên tia \(Ax\) vuông góc với mặt phẳng \((ABCD)\) lấy một điểm \(S\). Gọi \(C',D'\) lần lượt là hình chiếu vuông góc của \(A\) trên \(SC\) và \(SD\) . Chứng minh rằng :

a) \(\widehat {SBC} = \widehat {SC{\rm{D}}} = {90^0}\)  

b) \(AD’,  AC’\) và \(AB\) cùng nằm trên một mặt phẳng.

c) Chứng minh rằng đường thẳng \(C’D’\) luôn luôn đi qua một điểm cố định khi \(S\) di động trên tia Ax.

Xem lời giải

Xem thêm các bài Hình học lớp 11, hay khác:

Để học tốt Hình học lớp 11, loạt bài giải bài tập Hình học lớp 11 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 11.

Lớp 11 | Để học tốt Lớp 11 | Giải bài tập Lớp 11

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 11, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 11 giúp bạn học tốt hơn.