Bài tập 3 trang 99 Toán 11 tập 1 Chân trời: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD; M, N lần lượt là trung điểm của SB, SD; P thuộc đoạn SC và không là trung điểm của SC.
a) Tìm giao điểm E của đường thẳng SO và mặt phẳng (MNP)
b) Tìm giao điểm Q của đường thẳng SA và mặt phẳng (MNP)
c) Gọi I, J, K lần lượt là giao điểm của QM và AB, QP và AC, QN và AD. Chứng minh I, J, K thẳng hàng
Bài Làm:
a)
Trong mặt phẳng SBD, Gọi E là giao điểm của SO và MN
Do $MN \subset (MNP)$ nên $E \in (MNP)$
Vậy E là giao điểm của SO và (MNP)
b)
Trong mặt phẳng (SAC), gọi Q là giao điểm của EP Và SA.
Do $EP \subset (MNP)$ nên $Q \in (MNP)$
Vậy Q là giao điểm của SA và (MNP)
c)
Ta có: I và K là điểm chung của hai mặt phẳng (QMN) và (ABCD). Nên IK là giao tuyến của (MNPQ) và (ABCD)
Ta có $J \in QP, QO \subset (MNPQ)$ nên $J \in (MNPQ)$
$J \in AC, AC \subset (ABCD)$ nên $J \in (ABCD)$
Do đó J là giao điểm của (ABCD) và (MNPQ) hay J nằm trên giao tuyến của (ABCD) và (MNPQ)
Vậy I, J, K thẳng hàng.