Câu 3: Trang 137 sgk toán tiếng anh lớp 4
Calculate in two ways:
Tính bằng hai cách:
a) $(\frac{1}{3}+\frac{1}{5}) \times \frac{1}{2}$
b) $(\frac{1}{3}-\frac{1}{5}) \times \frac{1}{2}$
Bài Làm:
a) $(\frac{1}{3}+\frac{1}{5}) \times \frac{1}{2}$
Solution 1:
Cách 1:
$(\frac{1}{3}+\frac{1}{5}) \times \frac{1}{2} = (\frac{1\times 5}{3\times 5} + \frac{1\times 3}{5\times 3})\times \frac{1}{2}$ ( make the fractions have a common denominoator) (quy đồng mẫu số)
$= (\frac{5}{15} + \frac{3}{15})\times \frac{1}{2} = \frac{8}{15}\times \frac{1}{2} = \frac{8\times 1}{15\times 2} = \frac{4\times 2\times 1}{15\times 2} = \frac{4}{15}$(both numerator and denominator are simplified for 2) (rút gọn cả tử và mẫu cho 2)
Solution 2:
Cách 2:
$ (\frac{1}{3}+\frac{1}{5}) \times \frac{1}{2} = \frac{1}{3}\times \frac{1}{2} + \frac{1}{5}\times \frac{1}{2} = \frac{1\times 1}{3\times 2} + \frac{1\times 1}{5\times 2} = \frac{1}{6}+\frac{1}{10} = \frac{1\times 10}{6\times 10} + \frac{1\times 6}{10\times 6}$ ( make the fractions have a common denominoator) (quy đồng mẫu số)
$= \frac{10}{60}+\frac{6}{60}= \frac{16}{60} = \frac{16:4}{60:4} = \frac{4}{15}$
b) $(\frac{1}{3}-\frac{1}{5}) \times \frac{1}{2}$
Solution 1:
Cách 1:
$(\frac{1}{3}-\frac{1}{5}) \times \frac{1}{2} = (\frac{1\times 5}{3\times 5} - \frac{1\times 3}{5\times 3})\times \frac{1}{2}$
$= (\frac{5}{15} - \frac{3}{15})\times \frac{1}{2} = \frac{2}{15}\times \frac{1}{2} = \frac{2\times 1}{15\times 2} = \frac{1}{15}$(both numerator and denominator are simplified for 2) (rút gọn cả tử và mẫu cho 2)
Solution 2:
Cách 2:
$ (\frac{1}{3}-\frac{1}{5}) \times \frac{1}{2} = \frac{1}{3}\times \frac{1}{2} - \frac{1}{5}\times \frac{1}{2} = \frac{1\times 1}{3\times 2} - \frac{1\times 1}{5\times 2} = \frac{1}{6}-\frac{1}{10} = \frac{1\times 10}{6\times 10} - \frac{1\times 6}{10\times 6}$
$= \frac{10}{60}-\frac{6}{60}= \frac{4}{60} = \frac{4:4}{60:4} = \frac{1}{15}$