68. Cho hypebol (H) có phương trình chính tắc: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ với a > 0, b > 0 và đường thẳng y = n cắt (H) tại hai điểm P, Q phân biệt. Chứng minh hai điểm P và Q đối xứng nhau qua trục Oy.
Bài Làm:
Thay y = n vào phương trình chính tắc của hypebol ta có: $\frac{x^{2}}{a^{2}}-\frac{n^{2}}{b^{2}}=1$
Suy ra $x^{2}=a^{2}(1+\frac{n^{2}}{b^{2}})\Rightarrow x=a\sqrt{(1+\frac{n^{2}}{b^{2}})}$ hoặc $x=-a\sqrt{(1+\frac{n^{2}}{b^{2}})}$
Không mất tính tổng quát, ta lấy $P(a\sqrt{(1+\frac{n^{2}}{b^{2}})};n),Q(-a\sqrt{(1+\frac{n^{2}}{b^{2}})};n)$
Vì P, Q có cùng tung độ và hoành độ đối nhau nên P, Q đối xứng qua trục Oy